
Matlab, R and S-PLUS Functions for
Functional Data Analysis

J. O. Ramsay, McGill University

1 April 2003

1

Contents

1 Introduction 5
1.1 The Goals of these Notes . 5
1.2 The Two Languages . 5
1.3 Object-oriented programming 6
1.4 An Overview of the Steps in an FDA 7
1.5 An Overview of these Notes 9
1.6 An Important Disclaimer . 10

2 More on FDA Objects 11
2.1 What is an Object in Matlab or S-PLUS? 11
2.2 The three essential classes for FDA 12
2.3 The basis class . 12
2.4 The functional data object: fd 16
2.5 The Bi-variate functional data object: bifd 18
2.6 Constrained functional data objects 19

3 The more important FDA functions 20
3.1 basis and fd object creation functions 20

3.1.1 create.bspline.basis or create bspline basis . . 21
3.1.2 create.fourer.basis or create fourer basis . . . 22
3.1.3 create.constant.basis or create constant basis . 23
3.1.4 create.polygonal.basis or create polygonal basis 23
3.1.5 create.basis.fd or create basis fd 24
3.1.6 create.fd or fd . 24
3.1.7 create.bifd or bifd 25

3.2 The data2fd function . 26
3.2.1 Format of the Data . 26
3.2.2 data2fd . 27

3.3 Smoothing by a Roughness Penalty 28
3.3.1 smooth.fd for smooth fd 31
3.3.2 smooth.basis or smooth basis 32

3.4 Functions for Smoothing with Constrained Functions 34
3.4.1 Positive Smoothing with smooth.pos and smooth pos 34
3.4.2 Monotone Smoothing with smooth.monotone and smooth monotone 36

3.5 Summary, Evaluation and Plotting Functions 38

2

3.5.1 plot.fd, plot or plot fd 38
3.5.2 cycleplot.fd or cycleplot fd 39
3.5.3 lines.fd or line . 40
3.5.4 print.fd or display 41
3.5.5 summary.fd (S-PLUS only) 41
3.5.6 eval.fd or eval fd 41
3.5.7 eval.bifd or eval bifd 42

3.6 Data Manipulation Functions 43
3.6.1 Subsets of Functional Data Observations 43
3.6.2 Arithmetical Operations 44

3.7 Registration Functions . 44
3.7.1 Landmark Registration 44
3.7.2 A Global Registration Function 46

3.8 Elementary Statistical Functions 48
3.8.1 mean.fd or mean . 48
3.8.2 std.fd or std . 48
3.8.3 center.fd or center 49
3.8.4 var.fd or var . 49

3.9 Principal Components Analysis 50
3.9.1 pca.fd or pca . 50
3.9.2 plot.pca.fd or plot pca 51
3.9.3 varmx.pca.fd or varmx pca 52

3.10 The Linear Model Functions 53
3.10.1 linmod.fd or linmod 53

4 Installation Notes 55
4.1 S-PLUS Installation . 55
4.2 Matlab Installation . 55

5 Some Sample Functional Data Analyses 56
5.1 The Monthly Weather Data 56
5.2 The Lip Data: A Landmark Registration Example 70

6 Some Additional Notes on Monotone Smoothing 74
6.1 Introduction . 74
6.2 A Differential Equation for Monotone Functions 77
6.3 Monotone Data Smoothing . 79

3

6.3.1 Basis Function Expansions for w 80
6.3.2 Testing for Non-monotonicity 81
6.3.3 The Growth Data . 82

7 Some Additional Notes on Curve Registration 83
7.1 Introduction . 83
7.2 Formulation of the Registration Problem 90
7.3 Two Registration Techniques 93

7.3.1 Marker or Landmark Registration 93
7.3.2 Continuous Registration 97
7.3.3 A Test of Continuous Registration 99

7.4 Defining Smooth Warping Functions h 100
7.5 Estimation of Warping Function hi 102

7.5.1 Roughness Penalties on w(t) 103
7.5.2 The Procrustes Fitting Criterion 104

4

1 Introduction

1.1 The Goals of these Notes

These notes are designed to accompany the books Functional Data Analysis
(1997) and Applied Functional Data Analysis (2002) by J. O. Ramsay and B.
W. Silverman . They describe some objects and functions that can be used to
implement and simplify various types of functional data analysis, and their
use is illustrated with some of the data described there. It is hardly necessary
to be familiar with all of the book before using this software. Indeed, a useful
strategy in developing a feel for how these techniques work might be to read
the introductory chapter, with perhaps some browsing elsewhere, and then
use this software to perform some of the analyses, before going on to read in
detail.

In these notes we will always abbreviate the noun functional data analysis
by FDA, and the adjective functional data by FD.

Our first objective in developing this software was to help a prospective
FDA get off the ground. We have not tried to develop sophisticated algo-
rithms able to deal with almost any eventuality, but rather simple methods
that invite extension and other modifications. To this end we have tried to
keep the modules small and readable, and we have not strayed much beyond
the material and examples in the text. However, it must be admitted that
each new application seems to call for an extension of some technique, and
things do tend to become more complex as time rolls on.

1.2 The Two Languages

The software has been developed for both the Matlab language and R/S-
PLUS family. We do not wish to convey any superiority of any programming
language over the others, although to be sure each language has strengths
that one must work a bit to implement in the other. But on the whole, the
two languages are similar, and we have found that moving code from one to
the other has not been difficult. In general we will not distinguish between R
and S-PLUS as languages, and will most refer to the latter. We will, however,
mention from time to time special issues for R users. For example, in R the
splines package must be loaded before using a B-spline basis, whereas in
S-PLUS nothing particular needs to be done.

5

We have tried to use the same names for functions in both languages, but
note that compound names are constructed using an underscore in Matlab,
as in smooth basis, and a period in R/S-PLUS, as in tt smooth.basis.

Both languages have a capacity for object-oriented programming. This
gives an enormous advantage to code development, and has been used through-
out. However, the object-oriented programming capability of Matlab is fairly
rudimentary, and we have tried not to use any feature in S-PLUS that could
not be reproduced in Matlab.

1.3 Object-oriented programming

What is object-oriented programming? Both languages have the capacity to
define a single compound variable that can contain several pieces of informa-
tion of varying types, such as scalars, vectors, names, strings, and so forth.
These are list variables (S-PLUS) or struct variables (Matlab). A class
is a specification or blueprint for one of these variables that pre-specifies its
structure. That is, a class specifies the type and gives a name for each piece
of information in the compound variable. A class also gives a type name to
the compound object itself. Assigning a class name to a list or struct allows
the language’s interpreter to know in advance what its internal elements (S-
PLUS) or fields (Matlab) are. These internal elements are often called slots
in the literature object-oriented programming.

Objects are specific variables created so as to conform to the blueprint or
specification in a specific class.

In the functional data analysis software, for example, a functional data
object, called an fd object, in it’s simplest version conforms to the functional
data class that specifies that the object will have

• an array of numbers that are the coefficients for basis function expan-
sions

• another object called a basis object that specifies a basis for the ex-
pansion.

More will be said about both the fd and basis classes below, and these
classes and objects that they define are introduced here as a preliminary
exposure to these essential ideas.

6

One consequence of using classes and objects is that the same function
name can be used for many different types of things. This is called over-
loading a function name. So, for example, we can provide a plot function for
functional data objects that works because the interpreter is able to recognize
that the argument in a call like plot(fdobj) is an object of this class, and
then will use the appropriate special purpose plotting function. The user
doesn’t have to know what that special function is, since the interpreter
takes care of this, and can simply use plot over and over again. We will
also use overloading for such familiar functions as mean, print, var, and even
operations such as +/-. See Section 2 for a more detailed description of
objects.

We recommend that users not already familiar with the object-oriented
features in these languages first read the few chapters on this topic in ref-
erences such as Chambers and Hastie (1996) (S-PLUS) or Hanselman and
Littlefield (2001) (Matlab).

And, as you have already noted, we shall use typewriter font to refer
to actual functions, commands using them, class names, and to all key words
in either language.

1.4 An Overview of the Steps in an FDA

A typical FDA tends to include most of the following steps:

1. The raw data are collected, cleaned, and organized. We assume that
there is a one-dimensional argument, that we will denote by t. As a
rule functions of t are observed only at discrete sampling values tj, j =
1, . . . , n, and these may or may not be equally spaced. But there may
well be more than one function of t being observed, as would be the
case for handwriting data, where there are X-, Y -, and possibly Z-
coordinates.

In any case, we assume that there are also replications of each function,
indexed by i = 1, . . . , N. Each replicate is referred to as an observation,
since we want to treat the discrete values as a unitary whole. While
most studies will have the same set of argument values tj for all repli-
cations, this is not required, and the more general notation for these,
tij, j = 1, . . . , ni might well be needed.

7

2. The data are next converted to functional form. By this is meant that
the raw data for observation i are used to define a function xi that can
be evaluated at all values of t over some interval. In order to do this, a
basis must first be specified, which is system of basic functions which
are combined linearly to define actual functions. The data are orga-
nized into a functional data object, often using the function data2fd,
or perhaps the function smooth basis (Matlab) or smooth.basis (S-
PLUS), and both of these functions require the specification of a basis
object.

3. A variety of preliminary displays and summary statistics are provided.
These can be produced by special plotting and summary functions that
use functional data objects as input, such as plot, mean, and var.

4. The functions may need to be registered or aligned, in order to have
important features found in each curve occur at roughly the same ar-
gument values. This process is said to separate vertical amplitude vari-
ation from horizontal or phase variation. We provide both a landmark
registration algorithm and a continuous registration algorithm to do
this.

5. Exploratory analyses are carried out on the registered data. The main
techniques discussed in the book are

• Principal components analysis (pca)

• Canonical correlation analysis (cca)

• Principal differential analysis (pca)

6. Models are constructed for the data. These models may in the form
of a functional linear model, using linmod.fd, or in the form of a
differential equation, using pda.

7. The models are evaluated, often with the help of special plotting and
summary functions adapted to the particular analysis.

These steps are diagrammed in the flowchart in Figure 1.

8

Figure 1: A flow chart for a typical functional data analysis.

1.5 An Overview of these Notes

Section 2 describes the essential objects needed to use this software. These
are essentially two:

• the basis object used to define the functional data object, and

• the actual fd object that contains our sample of functional observa-
tions, and that is the primary input to the various Matlab and S-PLUS
functions defined in the next section.

An additional third object (bifd) is defined for functions of two variables.
Section 3 provides details about the functions that will use these objects

to do various functional data analyses. These functions

• create functional data objects by smoothing or interpolating the raw
discrete data,

• plot and summarize functional data objects,

• align prominent curve features by registration,

9

• compute functional versions of elementary statistical descriptions,

• perform exploratory analyses, such as principal components analysis
(PCA), canonical correlation analysis (CCA), and principal differential
analysis (PDA),

• fit linear models where the independent and/or dependent variables are
functional, and

• manipulate functional data objects using such basic arithmetical op-
erations as addition, multiplication, square-rooting, exponentiation, as
well as selecting subsets, and so forth.

Descriptions of the functions described in this section, as well as other func-
tions in the package, are also available by using help, as in help(data2fd).
In both languages, the code itself for each functional also contains a fair
amount of detail at the beginning describing the purpose of the function,
each of the arguments, and the results returned.

Section 4 provides some useful information about installing the package.
Section 5 shows how functional data objects and functions are used to

carry out some of the analyses that appear in the text. These examples are
not at all exhaustive, but only intended to get you started. For further ex-
amples in more sophisticated situations, go to the web site accessible through
www.springer-ny.com for the book by Ramsay and Silverman (2002).

Section 6 offers some notes specific to monotone smoothing.
One small detail: Functions in S-PLUS designed to work on FD objects

are defined with the extension .fd, so, for example, we have plot.fd. But
when they are actually used, the .fd part is not required, and in these notes,
it will also be dropped.

1.6 An Important Disclaimer

These notes are not updated each time a change is made to a function.
Although the instructions on how to use the functions that are in these notes
won’t have changed too much, it is always wise to compare the notes against
what is displayed by the help command in the language to be sure that the
notes are still up to date.

10

2 More on FDA Objects

In this section we define the three objects that we shall use in our FDA’s.
First, we go into more detail on the nature of an object.

2.1 What is an Object in Matlab or S-PLUS?

An object in S-PLUS is a list with a class attribute. In Matlab, it is a
struct with a class attribute.

A list or a struct, in turn, is a collection of data structures such as
scalars, vectors, matrices, other lists, objects, and so forth, referred to as the
members, fields, or slots of the list or struct. For example, a fd object is a
struct in Matlab that contains two fields: a coefficient matrix, and a basis

object. In S-PLUS, it is a list that contains these two elements. A basis

object is in turn a list or a struct depending on the language that contains
(i) a string slot for the type of basis, (ii) a vector slot for the range of the
argument, (iii) a scalar slot for the number of basis functions, and (iv) a
vector slot for the fixed parameters defining the basis.

It is the presence of a class name that turns a list or a struct into an
object. This class name is used by Matlab or S-PLUS to select an appro-
priate function from among a collection of possibilities. The class name is,
effectively, a guarantee to the language that the list or struct will have a
fixed pre-specified internal structure. That is, given its name, the intepreter
will know exactly how many slots there are, have a name for each slot, and
what the properties of the information in each slot are. Consequently, the
language knows exactly what can and cannot be done with the object.

Note that the term class refers to the blueprint for the list or struct,
and the term object refers to a specific data structure constructed using this
blueprint. To illustrate, “hamburger” is a blueprint specifying that ground
beef shall be placed between two round breads, and is therefore like a class,
whereas the actual hamburger that you are about to eat is like an object.
Because you know the in advance what the structure of a hamburger is, you
won’t expect to pour milk on it.

Each object has a function associated with it that creates the object,
and we have used the prefix create to indicate such a function. For ex-
ample, we can create a basis of the Fourier type by using the function
create fourier basis in Matlab or create.fourier.basis in S-PLUS.

11

This ensures that the object has the correct structure.
Essentially the creation process is one organizing the required information

into the required list structure, and assigning the class name to the list. The
creation functions also assign names to the members in the list for your
convenience when you want to get at them specifically rather than at the
whole list. The object creation functions can also supply some of the members
in the list by default, so that you need not necessarily provide all the members
that the object requires.

2.2 The three essential classes for FDA

Here, then, are the three most important classes that we will need. There
are others, but nearly every FDA will make use of these three classes, and
certainly of the first two.

2.3 The basis class

Before you can convert raw discrete data into a functional data object with
these functions, you must specify a basis. A basis is a system of primitive
functions that are combined linearly to approximate actual functions. An
example is successive powers of an argument t, linear combinations of which
form polynomials. A more useful example is the unit function 1, and suc-
cessive pairs of sine and cosine functions with frequencies that are integer
multiples of a base period that make up a Fourier series.

The FDA text used this basis expansion method of defining a function
exclusively, even though there are certainly other approaches. This was to
impose both a uniformity of approach for reasons of simplicity, and to enable
us to use roughness penalty methods. These functions continue this strategy,
and at this point you may feel like re-reading Chapters 3 and 4 in the text.

Thus, a function xi is represented by a basis function expansion, which
is defined by a set of basis functions, φk, k = 1, . . . , K. In this approach, a
functional observation xi is expressed as

xi(t) =
K∑

k

cikφk(t) . (1)

When these basis functions φk are specified, then the conversion of the data

12

into a functional data object involves computing and storing the coefficients
of the expansion, cik, into a coefficient matrix.

As was is indicated in Chapter 3, there are many bases possible, and
many considerations to take into account. We provide a number of the more
common bases:

• the Fourier basis, typically used for periodic data,

• the B-spline basis, typically used for non-periodic data,

• the constant basis, a single basis function whose value is 1 everywhere,
used to define constant functions,

• the exponential basis, a set of exponential functions, eαkt, each with a
different rate parameter αk,

• the polygonal basis, defining a function made up of straight line seg-
ments,

• the polynomial basis, consisting of the powers of t: 1, t, t2, t3, . . .,

• the power basis, consisting of a sequence of possibly non-integer powers,
including negative powers, of an argument t that is required to be
positive.

Of these basis functions, the first two are by far the most important, and can
be used to carry out almost all analyses described in the book. Each of these
functions has its own constructor function, such as create bspline basis

in Matlab or its counterpart create.bspline.basis in S-PLUS.
We also hope that users with special bases in mind that we have not

provided will discover from the code how they may add their own basis
systems.

In specifying a basis, we must specify four things. That is, there are four
slots in the basis class:

• the type of the basis. This is a string such as ’bspline’, ’fourier’, ’con-
stant’ and so on that names the basis. (Note: S-PLUS uses double
quotes for strings.)

• the range of argument values, specifying the lower and upper limits on
argument values,

13

• the number of basis functions, and

• the parameter values defining the basis. The number of meaning of the
parameter values will depend on the nature of the basis. For example,
a Fourier basis requires only a single positive number indicating the
base period, a B-spline basis needs a strictly increasing sequence of
knot values, but a constant basis doesn’t need any parameters at all.

Details for each type of basis are given below.
Consequently, a basis object in S-PLUS is a list variable with four el-

ements, or in Matlab a struct variable with four fields. These slot names
are:

type: This is a string such as: fourier or bspline. A few variants of these
strings will also work, such as fou or bsp.

rangeval: This is a vector containing two values: the initial and final values
of t defining the interval over which a functional data object can be
evaluated. This interval need not include all the tj values associated
with the discrete data, and it may extend beyond them, but for sure
it must contain enough tj values to define the basis function expansion
(1) properly.

nbasis: This is an integer specifying the number of basis functions to be
used in the expansion, indicated by K in (1).

params: A vector containing the parameters defining the basis. The con-
tents of this vector depend on the type of basis.

The first three slots don’t vary in type of size for different bases, the
the last params basis is a vector with a length and meaning that has to be
specified separately for each basis type. The details are:

Fourier basis: for a fourier basis, the params entry contains only the basis
period T for the sine/cosine series. The basis functions are:

1, sin ωt, cos ωt, sin 2ωt, cos 2ωt, . . .

where ω = 2π/T. Note that because the constant is included, the num-
ber of basis functions, nbasis, should be odd if you want to completely

14

allow for arbitrary phase variation. In fact, if an even number is spec-
ified in the create.fourier.basis function, it is changed to the next
odd number. By default, the period is equal to the width of the interval
defined in the rangeval entry.

B-spline basis: for a basis of type bspline, the params vector contains
the strictly increasing knots or break points defining the B-spline func-
tions. The initial and final knots equal to the lower and upper limits
in rangeval entry, respectively. Note that the order of a B-spline basis
plus the number of interior knots equals the number of basis functions,
so that the order (degree of the piece-wise polynomials + 1) of these
B-splines will be equal to the value of the nbasis plus two entry minus
the number of elements in the params entry. In Matlab code, norder
= nbasis - length(params) + 2. For example, if we use 11 break
values 0.0, 0.1, 0.2, . . . , 1.0 in the params slot, and 13 for the nbasis

slot, this implies that the order of the spline is 13 + 2 - 11 = 4 = 13
- 9. The order must be between 1 and 20. If the nbasis and params

slots determine a value outside of this range, the create.bspline.fd

S-PLUS function will terminate with an error message, and so will the
Matlab create bspline fd function. Order 4 is a frequent choice, im-
plying piece-wise cubic polynomials, and this would mean that nbasis
= length(params) + 2. If no knot or break values are specified, they
are set up to partition the interval into equal-sized parts. If only the
number of basis functions is specified in addition to the range, the
knots are equally spaced and the order is 4. There is room for incon-
sistency here, of course, when all four arguments are supplied, and if
this happens, the norder slot value is ignored.

Constant basis: This require no parameters.

Exponential basis: Each basis function is of the form

φk(t) = eαkt

and the params members are the rate constants αk.

Polygonal basis: Polygonal functions are formed from straight line seg-
ments. Strictly speaking, these may also be considered as B-splines
of order 2. But because they are so handy, we provide a special class

15

for them. The params vector contains the junction points for the line
segments. These will often be the sampling values tj for the raw data.

Power basis: This is designed for positive argument values t only. The
parameters are a sequence of powers, which need not be integers and
may be negative.

A basis object can be set up by calling the generic function create basis fd

in Matlab or create.basis.fd in S-PLUS described in detail in the next
section. But special purpose functions such as create.bspline.basis and
create.fourier.basis (S-PLUS) are generally more convenient.

Okay, by now you’ve figured out that in S-PLUS function names
can be divided into sections with a period, and that in Matlab this
is done using an underscore. So you can make the translation into
the other system yourself whenever we use either convention. So
from now on, we will only give a function name for one of the
two languages.

2.4 The functional data object: fd

With a basis in hand, we are now ready to actually set up a functional data
object. For brevity, we will refer to functional data objects as fd objects. An
fd object consists of a sample of N FD observations. An FD observation,
in turn, consists of one or more functions. That is, an FD observation is
either scalar- or vector-valued function according to the nature of the data.
For example, the gait data involve N = 39 bivariate FD observations, each
consisting of a function for knee angle and another for hip angle. We speak
of the corresponding fd object as having two functions, although it has 39
replications, each consisting of two functions.

An fd object is a list (S-PLUS) or a struct (Matlab) with the class at-
tribute fd that contains three named slots. They are as follows, the names
being shown in bold type:

coef: This is either a 1-, 2- or 3-dimensional array depending on whether the
functions are scalar- or vector-valued and whether there is only one or
more than one replication. The dimensions of this array have meanings
as follows:

16

1. The first dimension corresponds to basis functions in the basis

entry described below. The length of this dimension must there-
fore be equal to K in (1) and to the nbasis slot in the basis object.
(The basis object has already been described above). That is,
for a specific replicate and function, there must be a coefficient for
each basis function.

2. The second dimension corresponds to replications. The length of
this dimenson is N , the sample size. This may be 1, f course, if
there is only a single functional observation involved.

3. The third dimension, if required, corresponds to functions when
there are multiple functions of t involved. For example, for the
handwriting data in the book, the length of this dimension would
be 2 since these data have X- and Y-coordinates.

So, for example, if we use 7 fourier basis functions for the monthly
temperature data for the 35 Canadian weather stations described in
the text, the coef array will be 7 by 35. On the other hand, for the
20 samples of handwriting data, each described by an X- and a Y
coordinate, and where we are using 23 B-spline basis functions (say
with order 4 and 19 interior knots), the coef array will be 23 by 20 by
2.

basisfd: The second slot is simply the name of a basis object that has
already been set up to provide the expansion or representation of the
functions, and that is described already above.

fdnames: This is a list (S-PLUS) or a cell (Matlab) with three members.
These members provide labels that are used in plotting and other rou-
tines to describe the arguments, the replications, and the function val-
ues. The members are:

1. The name of the first list member is a string used to describe
arguments. It might be something like ’time’, for example. The
value of the first member, if provided, would be a character vector
providing names for each argument value.

2. The second member is a string used to describe replications. For
the weather data, we might use ’Weather stations’.

17

3. The name of the third list member is used to describe the values
of the functions, such as ’Deg C’ for the temperature data.

A functional data analysis usually begins by constructing a fd object by
inputting raw discrete data along with the sampling argument values tj or
tij into the function data2fd described in the next section. However, other
ways of constructing functional data objects are also described there.

In general, vector-valued fd objects are only used when the values of
the functions all mean the same things, such as angle for the gait data, or
spatial coordinates for functions defining spatial position. When functions
have different units, use multiple fd objects rather than a single vector-valued
object.

This use of the term “object” and “observation” is consistent with how
multivariate data are described by software packages such as SAS and SPSS.
In that context, an observation can be scalar or multivariate, and corresponds
to the row of a data matrix. And, of course, the multivariate “object” is
precisely that data matrix.

2.5 The Bi-variate functional data object: bifd

We also will need to set up functions of two variables. For example, a vari-
ance function v(s, t) or a correlation function r(s, t) are functions of two
variables. So is the regression function β(s, t) in a linear model where both
the independent and dependent variables are functions. Not all FD analyses
will require two-argument or bivariate functions, of course.

An bifd object is defined by a single coefficient array, and a basis object
for each argument s and t. Consequently, the class defining an fd object has
four slots:

coef: This is either a 2-, 3-, or 4-dimensional array depending on whether the
functions are scalar- or vector-valued. The meanings of the dimensions
are the same as for fd objects, except that the first two dimensions now
correspond to basis functions. Thus, the dimensions are:

1. The first two dimensions corresponds basis functions in the ’sbas-
isfd’ and ’tbasisfd’ members for create.bifd list described below.
The length of each dimension must therefore be equal to nbasis

18

entry in the corresponding basis object named in the second and
third arguments.

2. The third dimension corresponds to replications. The length of
this dimenson is N , the sample size. This may be, of course, 1,
and if there is no third dimension, this is assumed to be the case.

3. The fourth dimension, if required, corresponds to functions when
there are multiple functions of s and t. See the description of
the var.fd function for an example. If there are only either two
or three dimensions for the coef array, then only one variable is
assumed.

sbasisfd: The name of a basis object for the first argument s.

tbasisfd: The name of a basis object for the second argument t.

bifdnames: A list (S-PLUS) or cell (Matlab) with three members with the
same specifications as above for the fd object.

2.6 Constrained functional data objects

Simple functional data objects set up as indicated above will not in general
conform to any shape constraints, such as being strictly increasing, strictly
positive, or, in the case of probability density functions, being both strictly
positive and having having a unit area under the curve or integral. However,
provision is also made in the software for functions such as these. Each is
defined in terms of a simple functional data object that is transformed as
follows:

Positive functional data object: the exponential of a simple FD object,

Monotone functional data object: the indefinite integral of a positive
FD object,

Density functional data object: a positive FD object divided by its def-
inite integral.

Each of these types of constrained functions is associated with its own
special purpose functions for converting discrete raw data to curves, plotting,
and so forth.

19

3 The more important FDA functions

This section describes a variety of Matlab and S-PLUS functions that do
useful things during the course of an FDA. It is natural to classify these
functions in rough correspondence with the steps in an FDA described in
Section 1.4:

Object creation functions: These, already alluded to in the previous sec-
tion, create the four types of objects used as inputs to other functions.
Included in these are also two functions for actually computing basis
function values.

Data plotting and summary functions: These are for the most part sim-
ple; they have the same names as the functions used elsewhere in S-
PLUS: plot, print, summary along with the subset selection opera-
tor []. But what they actually do depends on the nature of the object
supplied as an argument.

Smoothing functions: These functions smooth a functional data object of
the fd class. They include functions for estimating strictly positive,
strictly monotonic and probability density functions from data.

Registration functions: These are used to register or align functions prior
to a subsequent analysis.

FDA functions: These actually perform FDAs such as principal compo-
nents analysis, linear modeling, canonical correlation analysis, and
principal differential analysis.

3.1 basis and fd object creation functions

We now detail the functions used to create the three types of objects defined
in Section 2.

The first group of these are for creating a basis object. The function
create.basis.fd in S-PLUS or create basis fd in Matlab is a generic
function for creating any basis, but it may be more convenient to use one of
the specialized basis functions designed to create a basis of a specific type.
We first describe four of the basis-specific functions, and then the generic
function.

20

In each description, we first specify the call to the function in the two
instances. The first will be for Matlab, and second for S-PLUS. (So as not
to seem discriminating, we shall reverse this order in the subsection title.)
In each call, the initial arguments are required, but some of the later ones
may be optional. Note that S-PLUS syntax permits the specification of the
default value for these optional arguments in the function call, while Matlab,
alas, does not. This is one area where S-PLUS is better.

The argument call is followed by a description of the function. This
description is broken down into parts, in much the same manner as the
documentation conventions used in S-PLUS. These parts are: Purpose, Ar-
guments, Returns, and Examples.

We will not attempt to describe the default values for all the arguments
that are optional in order to keep the summary both simple and useful at
the same time. To find out the last word, you should look at the code for
the function itself, and read the initial comment lines.

Note that where we use single quotes, as in ’bspline’, for strings, the
S-PLUS language officially uses double quotes, "bspline", but actually, in
fact, works correctly with single quotes as well.

3.1.1 create.bspline.basis or create bspline basis

Recall that the first line specifies the Matlab call, and the second the S-PLUS
call.

We begin with the most complex creation function, that for a B-spline
basis. If you can wade through this, the other functions will be easy. But
then, B-splines are complex structures, and it is precisely this complexity that
gives them their versatility and ensures an honoured place in our lexicon of
bases.

create_bspline_basis(rangeval, nbasis, norder, params)

create.bspline.basis(rangeval, nbasis, norder=4, breaks=NULL)

Purpose: Create a B-spline basis object.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

21

nbasis: (required) An integer variable specifying the number of basis
functions

norder: (optional) An integer specifying the order of B-splines. The
order of a B-spline is one higher than the degree of its piecewise
polynomial segments. The default order is 4, and this defines
splines that are piecewise cubic.

params: (optional) A vector specifying the break points defining the
B-spline. Also called knots, these are a strictly increasing sequence
of junction points between piecewise polynomial segments. They
must satisfy breaks[1] = rangeval[1] and breaks[nbreaks]

= rangeval[2], where nbreaks is the length of breaks. There
must be at least 3 values in breaks. There is a potential for incon-
sistency among arguments nbasis, norder, and breaks. It is re-
solved as follows: If breaks is supplied, nbreaks = length(breaks),
and nbasis = nbreaks + norder - 2, no matter what value for
nbasis is supplied. If breaks is not supplied, but nbasis is,
nbreaks = nbasis - norder + 2, and if this turns out to be less
than 3, an error message results. If neither breaks nor nbasis is
supplied, nbreaks is set to 21.

Returns: A list with the basis class attribute with members as above hav-
ing names type, rangeval, nbasis, and params, respectively.

3.1.2 create.fourer.basis or create fourer basis

create_fourier_basis(rangeval, nbasis, period)

create.fourier.basis(rangeval, nbasis, period=width)

Purpose: Create a fourier basis object.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of ba-
sis functions. If this is even, it will be increased by one, since
the fourier basis will always involve the constant function plus a
number of sine/cosine pairs.

22

period: (optional) The period of the most slowly varying sin and co-
sine functions. By default, this is the difference, called width,
between the values in rangeval.

Returns: A list with the basis class attribute with members as above hav-
ing names type, rangeval, nbasis, and params, respectively.

3.1.3 create.constant.basis or create constant basis

create_constant_basis(rangeval) create.constant.basis(rangeval)

Purpose: Create a constant basis object, containing only one basis func-
tion, whose value is always one.

Arguments: rangeval: (required) A vector of length 2 containing the ini-
tial and final values of argument t defining the interval over which
the functional data object can be evaluated.

Returns: A list with the basis class attribute with members as above hav-
ing names type, rangeval, nbasis, and params, respectively.

3.1.4 create.polygonal.basis or create polygonal basis

create_polygonal_basis(argvals) create.polygonal.basis(argvals)

Purpose: Create a polygonal basis object. This is used where all the infor-
mation in the original discrete data must be preserved, but converted
to functional form. Such a function is a polygonal line, with vertices
at the sampling points tj, and heights at these vertices equal to the
corresponding observed values yj.

Arguments: argvals: (required) A vector of defining the points at which
the line segments are joined. These will usually be the sampling
points for the raw data.

Returns: A list with the basis class attribute with members as above hav-
ing names type, rangeval, nbasis, and params, respectively.

23

3.1.5 create.basis.fd or create basis fd

create_basis_fd(type, rangeval, nbasis, params) create.basis.fd(type,

rangeval, nbasis, params)

Purpose: The generic function for creating a basis object.

Arguments: type: (required) A character variable with one of the values
fourier, bspline, ’const’, ’expon’, ’polyg’, ’poly’, or ’power’ in-
dicating the nature of the basis. Some variants of these spellings
are allowed.

rangeval: (required) A vector of length 2 containing the initial and
final values of argument t defining the interval over which the
functional data object can be evaluated.

nbasis: (required) An integer variable specifying the number of basis
functions

params: (required) A vector containing the parameters defining the
basis functions. See Section 2.3 for details.

Returns: A list with the basis class attribute with members as above hav-
ing names type, rangeval, nbasis, and params, respectively.

We now turn to two functions that create fd objects, one for regular
objects, and the other for functions of two arguments, or bivariate fd objects.
Here there is a real difference in the syntax for the two languages: Matlab
simply uses the class name to create an object of that class, whereas S-PLUS
requires the create prefix.

3.1.6 create.fd or fd

fd(coef, basisfd, fdnames)

create.fd(coef, basisfd, fdnames=defaultnames)

Purpose: to create an fd object containing functional observations. Note
that one would normally do this by a call to the data2fd function
described below, so that this function may not often be needed.

24

Arguments: coef: (required) A 2- or 3-dimensional array, the first dimen-
sion corresponding to basis functions, the second to replications,
and the third, if present, to functions.

basisfd: (required) An object of the basis class.

fdnames: (optional) A list of length 3, each member being a string
vector containing labels for the levels of the corresponding dimen-
sion of the discrete data. The first dimension is for argument
values, and is given the default name ’time’, the second is for
replications, and is given the default name ’reps’, and the third
is for functions, and is given the default name ’values’. These
default names are assigned in function tt data2fd, which also as-
signs default string vectors by using the dimnames attribute of
the discrete data array.

Returns: A list with the fd class attribute containing the coefficient array
with the name coefs, a basis object with the name basis, and a list
with the name fdnames.

3.1.7 create.bifd or bifd

bifd(coef, sbasisfd, tbasisfd, bifdnames)

create.bifd(coef, sbasisfd, tbasisfd,

bifdnames = list(NULL, repnames, NULL))

Purpose: to create a bifd object containing bivariate functional observa-
tions. This function is not normally needed; it is called within other
functions to create bivariate functions such as covariance functions and
bivariate regression functions.

Arguments: coef: (required) A 2-, 3-, or 4-dimensional array, the first two
dimensions corresponding to basis functions, the third to replica-
tions, and the fourth, if present, to functions.

sbasisfd: (required) An object of the basis class for the first argu-
ment.

tbasisfd: (required) An object of the basis class for the second argu-
ment.

25

fdnames: (optional) A list of length 3 containing dimension names.
See create.fd above for details.

Returns: A list with the bifd class attribute containing the coefficient array
with the name “coefs”, a basis object with the name “sbasis”, a basis

object with the name “tbasis”, and a list with the name fdnames.

3.2 The data2fd function

We now detail the main technique for creating a functional data object from
discrete data. This step represents the discrete data associated with each
replication by one or more functions, defined by a basis for the expansion
of the functions, along with the coefficients determining the expansion. The
result is a set of functions that can be evaluated for any argument value,
and which can be manipulated in various ways, such as computing inner
products, taking derivatives and so on.

This step, on the other hand, is not primarily intended to smooth the
data. This may be left to a subsequent function, smooth.fd in S-PLUS or
smooth fd in Matlab, that has as an argument an FD object that has al-
ready been computed. Indeed, our philosophy has been to leave considerable
roughness in the data, but to apply smoothing methods to quantities that
are estimated from the functions, such as eigenfunctions or harmonics in
principal components analysis, regression functions in linear modeling, and
canonical weight functions in canonical correlation analysis.

First we need to consider how the data corresponding to the discrete
sampling times tj should be set up for input to function data2fd.

3.2.1 Format of the Data

The first step in an analysis is to collect, clean and organize the raw data. We
assume that the observed data are functions of a one-dimensional argument
t, which for ease of reference we shall call “time”. Each function is observed
at discrete values ti, which may or may not be equally spaced. There may
well be more than one function of t being observed, for example the separate
coordinates of the handwriting data. In any case, there will be replications
of the observed function(s).

26

We shall assume, therefore, that our data are given in the form of a one-
two- or three-dimensional array Y of data values, and a vector or matrix
argvals of values of t. If argvals is a vector, then it is assumed that all
the replications are observed at the same time points. Thus, if only one
function is being observed, then, using S-PLUS syntax, Y[i,j] contains the
value of replication j at time point argvals[i]. If multiple functions are
observed, then Y[i,j,k] contains the value for replication j of function k
at time argvals[i]. Thus, the first dimension of Y corresponds to discrete
times of observation, the second, if required, to replications, and the third,
if required, to functions or variables. For example, if we set up the gait data
in this way, where there are 20 sampling times, Y will be 20 by 39 by 2.

If not all replications are observed at every time point, then missing values
can be coded as NA (S-PLUS) or NaN (Matlab). If the replications are observed
at varying time points, then argvals should be supplied as a matrix, with
argvals[i,j] being the time point at which Y[i,j] or Y[i,j,k] is observed.
If the number of argument values varies from one replication to another, the
rows of argvals should be padded out with NAs in S-PLUS or NaN’s in Matlab.
If any argvals[i,j] is coded as missing, then the corresponding entry or
members in Y is not used.

Names can be supplied for each for each dimension of the data. By
default, these are the strings time, replications and variables.

3.2.2 data2fd

data2fd(y, argvals, basis, fdnames)

data2fd(y, argvals, basis, fdnames = defaultnames)

Purpose: This function converts an array ’y’ of function values plus an
array ’argvals’ of argument values to a functional data object. This a
function that tries to do as much for the user as possible. This includes
selecting a basis, if one is not provided.

Arguments: y: (required) An array containing sampled values of curves. If
y is a vector, only one replicate and variable are assumed. If y is
a matrix, rows must correspond to argument values and columns
to replications or cases, and it will be assumed that there is only
one variable per observation. If y is a three-dimensional array, the
first dimension (rows) corresponds to argument values, the second

27

(columns) to replications, and the third (layers) to variables within
replications. Missing values are permitted, and the number of
values may vary from one replication to another. If this is the case,
the number of rows must equal the maximum number of argument
values, and columns having fewer values must be padded out with
missing value codes.

argvals: (required) A set of argument values. If this is a vector, the
same set of argument values is used for all columns of y. If ’argvals’
is a matrix, the columns correspond to the columns of y, and
contain the argument values for that replicate or case.

basisfd: (required) Either: A basis object created by function create.basis.fd,
or a missing value, in which case a basis object is set up by the
function using the values of the next three arguments.

fdnames: (optional) A list of length 3, each member being a string
vector containing labels for the levels of the corresponding dimen-
sion of the discrete data. The first dimension is for argument
values, and is given the default name ’time’, the second is for
replications, and is given the default name ’reps’, and the third
is for functions, and is given the default name ’values’. These
default names are assigned in function data2fd, which also as-
signs default string vectors by using the dimnames attribute of
the discrete data array.

Returns: A list with the fd class attribute containing the coefficient array
with the name coef, a basis object with the name basis, and a list
with the name fdnames. If periodic is T, the basis is of type fourier,
otherwise it is either of type bspline or polygonal. It is of polygonal
type if nresol=length(argvals) and nderiv=0; otherwise it is of type
bspline.

3.3 Smoothing by a Roughness Penalty

The roughness penalty method or regularization is used for the smoothing
process by the two functions in this section. At this point, it would be
worthwhile going through Chapter 4 in the text to appreciate the concepts

28

involved, and possibly also Chapter 15 that deals with some more advanced
smoothing concepts.

We have to admit that our thinking has changed somewhat since the
original book was written, and the following account of the smoothing process
differs from the book in that it considers the smoothing process to be applied
to an already existing functional data object, rather than to the raw data
themselves. However, look, too, at the function smooth.basis described
below that also permits smoothing discrete data using a roughness penalty.

The function data2fd computes the least squares approximation to the
data yij, j = 1, . . . , n corresponding to a specific function xi by minimizing

SMSSE(yi, c) =
n∑

j=1

[yij −
K∑

k=1

cikφk(tj)]
2. (2)

In this expression the coefficients cik determine the expansion, and the fitting
criterion SMSSE is minimized with respect to these. The expression also has
the possibility of weighting data values differently through a choice of weights
wj. We can control the smoothness of the fit by our choice of K; the smaller
K, the smoother the fit, and the larger K, the closer the fit will be to the
data. The functional observation is then

xi(t) =
K∑

k=1

cikφk(t).

However, there are several important advantages to further smoothing
or regularizing the function xi. By regularizing is meant attaching to the
least squares fitting criterion an additional term that controls the roughness
of some derivative of the fit. Let’s now use the notation yi to stand for an
un-smoothed function that is produced by a data2fd, and switch to using
xi for the smoothed version of yi. For simplicity, we will also drop sub-
script i, and assumed that the smoothing process discussed below is applied
simultaneously to all of the replications.

We regularize y by minimizing the criterion

PENSSE =
∫

[y(t)− x(t)]2 + λPEN(x) (3)

where the second term on the right side penalizes some form of roughness in
x. For example, we can use the criterion

PEN(x) =
∫

[D2x(t)]2 dt, (4)

29

which measures the roughness of the function x by integrating the square of
its second derivative D2x, called the total curvature of x. The more wiggly
x is, the larger this term will be. The idea is to force the curvature of x to
be less than that of y.

The smoothing parameter λ plays a key role. The larger λ, the more
heavily roughness in x is penalized, and ultimately as λ increases without
limit, x is forced towards a linear function, for which the second derivative is
everywhere 0. On the other hand, as λ is reduced to zero, the roughness of
x matters less and less, and finally when λ → 0, x will be just as rough as y.

Why consider regularization? First, this gives us much finer control over
the smoothness of fit. We can even use more basis functions than data values,
and still achieve a smooth fit! Without regularization, on the other hand, a
smooth fit often means sacrificing important variation in x in places where
it is needed.

Also, we may want to get a good derivative estimate, a critical considera-
tion for a number of the displays and analyses described in the book. For this
purpose, we may choose to penalize a higher order derivative. For example, if
we wanted to get a good acceleration estimate (D2x), we might penalize the
size of D4x, thereby controlling the curvature in the acceleration function.
Getting a good derivative estimate can be difficult without regularization.

It is shown in Chapter 4 that an equivalent expression for the penalty
term, PEN, is

PEN = λc′Rc.

The order K matrix R is called the penalty matrix, and vector c contains
the coefficients of the basis expansion.

The FDA functions permit wider range of roughness penalties than the
two mentioned above, namely integrating the square of D2x or of D4x. We
can also penalize the square of the result of applying any linear differential
operator L to x. A linear differential operator is a weighted combination of
derivatives, and has the following structure:

Lx(t) = w0(t)x(t) + w1(t)Dx(t) + . . . + wm−1(t)D
m−1x(t) + Dmx(t) . (5)

Integer m is the order of the linear differential operator L, and each of the m
functions wj(t), j = 0, . . . , m−1 apply a weight that may vary over argument
t to the derivative of order j. We see that Lx = D2x is a special case in which
the order is 2 and the two weight functions are w0 = w1 = 0.

30

The regularization penalty (4) then becomes

PEN(x) =
∫

[Lx(t)]2 dt. (6)

The reason for considering this wider family of penalties is discussed in
Chapter 15, and is that by the appropriate choice of L, we can force the
smooth as λ → ∞ to be toward a linear combination of m functions uj

that we choose. The choice L = D2 smooths toward a linear combination
of u1 = 1 and u2 = t, for example. One might call this wider choice of
penalties a designer smooth in the sense that we customize what we choose
to call smooth. Examples are given in the book, and more technical detail is
available in Heckman and Ramsay (2000).

Now when we look at the structure of (5), we see that it can be de-
fined by a functional data object having m replications, with observations
w0, w1, . . . , wm−1. To define the operator, all we have to do is to choose a
suitable basis for expanding these functions to the desired level of accuracy,
set up a matrix Y of values of these functions at a fine mesh of sampling
points tj, and input this matrix, this set of sampling points, and the basis
into function data2fd.

Thus, in all functions using a roughness penalty, the argument Lfd ap-
pears. This is allowed to be of two types: an integer such as 2, in which case
the penalty is defined to be of the form (4), or a fd object, in which case the
penalty is of the form (6). The order m of the differential operator is then
determined by the number of functions in the fd object Lfd.

We now give the specifications for the smoothing functions.

3.3.1 smooth.fd for smooth fd

This is a function designed to smooth a set of functional data objects. That
is, the discrete data have typically already been processed by data2fd to
produce a fd object, and now one wants to impose additional smoothness
on the objects. The smoothed versions of these objects may retain the same
basis as the originals, or they may use a new basis.

smooth_fd(fd, lambda, Lfd, rebase)

smooth.fd(fd, lambda, Lfd, rebase = T)

31

Purpose: Smooth the functions in a functional data object by the roughness
penalty or regularization method, and return a functional data object
containing the smooth functions. The functional data objects to be
smoothed will usually have already been created by data2fd.

Arguments: fd: (required) A functional data object to be smoothed.

lambda: (required) The smoothing parameter determining the weight
to be placed on the size of the derivative or other differential op-
erator in smoothing. This is must be a positive real number.

Lfd: (optional) Either an integer specifying the order of derivative, or
a functional data object specifying the linear differential operator
whose value is to be penalized. The default values are chosen
according to the basis as follows:

• B-spline basis: the order of the spline divided by 2

• polygonal basis: 1

• constant basis: 0

• all other bases: 2

rebase: (optional) If T or nonzero, and the basis type is polygonal,
then the basis is changed to a cubic bspline basis before smoothing.

Returns: A functional data object.

3.3.2 smooth.basis or smooth basis

The following function permits the direct smoothing of the raw discrete data,
if this seems desirable. It also offers the possibility of variable weighting of the
discrete observations. However, it lacks the capability of dealing with missing
data or with argument values that vary from observation to observation that
is available in data2fd.

smooth_basis(y, argvals, basisfd, wtvec, Lfd, lambda, fdnames)

smooth.basis(y, argvals, basisfd, wtvec=rep(1,n),

Lfd=NA, lambda=0,

fdnames=list(NULL, dimnames(y)[2], NULL))

32

Purpose: Smooths the discrete data in argument y, sampled at argument
values in argvals, and returns a functional data object containing the
smooth functions.

Arguments: y: (required) An array containing values of curves. If the
array is a matrix, rows must correspond to argument values and
columns to replications, and it will be assumed that there is only
one variable per observation. If y is a three-dimensional array,
the first dimension corresponds to argument values, the second to
replications, and the third to variables within replications. If y is
a vector, only one replicate and variable are assumed.

argvals: (required) A set of argument values, assumed to be common
to all replicates.

basisfd: (required) An object of the basis class defining the basis to
be used for expanding the functions.

wtvec: (optional) A vector of positive weights for the discrete values.

Lfd: (optional) The order of derivative, or a linear differential operator,
whose values are to be penalized in the smoothing phase. By
default Lfd is set as in function smooth.fd.

lambda: (optional) The smoothing parameter controlling size of the
roughness penalty.

fdnames: (optional) A list of length 3 with members containing 1. a
single name for the argument domain, such as “Time” 2. a vector
of names for the replications or cases 3. a name for the function,
or a vector of names if there are multiple functions.

Returns: A list object in S-PLUS containing the following information. For
Matlab, each of the objects is returned separately and in the following
order.

fd: An FD object

df: A degrees of freedom measure

gcf: A generalized cross-validation measure of lack of fit that discounts
fit for the degrees of freedom used to achieve it. It is often sug-
gested that a good value of the smoothing parameter is one that
minimizes this measure.

33

3.4 Functions for Smoothing with Constrained Func-
tions

It can happen that we require a smoothing function to satisfy certain con-
straints. Among these are: (1) that the function be strictly positive, (2) that
the function be strictly increasing or monotonic, and (3) that the function
be a probability density function (i. e. strictly positive and unit area under
the function.) Just using the standard smoothing functions above will often
not work because there is no provision in them for forcing the functions to
be constrained in any way.

In each of these cases, we have a special purpose smoothing function that
smooths the discrete data with a function that satisfies these constraints.
Each each case, also, the constrained function is defined by a transformation
of an unconstrained function that is a standard fd object. That is, that is
represented by a basis function expansion. Moreover, each of these objects
can also be smoothed by applying a roughness penalty.

Because the actual fit to the data is no longer a linear combination of
known basis functions, but rather a transformation of a fd object, the com-
putation requires iterative methods for optimizing a measure of fit. This
inevitably implies considerably more computation time. It also implies that
an initial estimate of the fd object must be supplied as an argument. This
can usually be an object that has all coefficients equal to zero.

Note: Each of these functions smooths only a single set of discrete data,
and returns a fd object that is a single observation. When multiple observa-
tions are involved, these functions must be called repeatedly. These functions
are not designed for multivariate functional observations.

3.4.1 Positive Smoothing with smooth.pos and smooth pos

In this case the fit to the data is of the form exp[W (t)] where W (t) is repre-
sented by a fd object. The following functions do the job.

smooth_pos(x, y, wt, Wfd, Lfdobj, lambda,

conv, iterlim, dbglev)

smooth.pos(x, y, wtvec=rep(1,n), Wfdobj, Lfd=2, lambda=0,

conv=1e-4, iterlim=20, dbglev=1)

34

Purpose: Smooths the discrete data in argument y sampled at argument
values in argvals, and returns a functional data object defining a
strictly positive function that fits the data.

Arguments: x: (required)A set of argument values.

y: (required) An array containing values to be smoothed for a single
functional observation.

wt: (optional) A vector of positive weights for the discrete values. By
default these values are all one’s.

Wfdobj: (required) An initial estimate of the functional data object
that is to be estimated. This can usually be defined by a coefficient
matrix that is all zeros.

Lfd: (optional) The order of derivative, or a linear differential operator,
whose values are to be penalized in the smoothing phase. By
default Lfd is set to be the second derivative.

lambda: (optional) The smoothing parameter controlling size of the
roughness penalty. It is zero by default.

conv: (optional) A small positive constant that controls the level of
convergence of the fitting criterion that is required in the numer-
ical optimization. The default is 0.0001.

iterlim: (optional) The maximum number of iterations allowed. The
default is 20.

dbglev: (optional) An integer controlling the amount of information
displayed for each iteration. By default only the iteration number,
fitting criterion value, and the gradient length are displayed.

Returns: A list object in S-PLUS containing the following information. For
Matlab, each of the objects is returned separately and in the following
order.

Wfdobj: The functional data object defining converged estimate of
the function W (t). Remember that the fit to the data is defined
by exp(W (t), so that object Wfdobj is in fact the natural logarithm
of the fit.

35

Flist: List object containing (1) Flist$f, the final log likelihood , (2)
Flist$norm, the final norm of gradient.

iternum: the number of iterations.

iterhist: , a matrix containing results for each iteration.

3.4.2 Monotone Smoothing with smooth.monotone and smooth monotone

In this case the fit to the data is of the form

x(t) = z′β0 + β1

∫ t

0
exp[W (u)] du (7)

where W (t) is represented by a fd object. That is, a monotone smooth
can be represented as the indefinite integral of a positive function, defined
by exp[W (t)], multiplied by a nonzero constant β1, plus a constant. The
constant term, defined by β0, is permitted to be a linear combination of a
set of covariate values in vector z, in which case β0 is a vector of the same
length containing the regression coefficients.

The following functions do the job. They are set up in very much the
same way as the functions for positive smoothing given above.

smooth_monotone(x, y, wt, Wfdobj, zmat, Lfdobj, lambda,

conv, iterlim, dbglev)

smooth.monotone(x, y, wt=rep(1,n), Wfdobj,

zmat=matrix(1,n,1), Lfdobj=1, lambda=0,

conv=1e-4, iterlim=20, dbglev=1)

Purpose: Smooths the discrete data in argument y sampled at argument
values in argvals, and returns a functional data object defining a
strictly positive function that fits the data.

Arguments: x: (required)A set of argument values.

y: (required) An array containing values to be smoothed for a single
functional observation.

wt: (optional) A vector of positive weights for the discrete values. By
default these values are all one’s.

36

Wfdobj: (required) An initial estimate of the functional data object
that is to be estimated. This can usually be defined by a coefficient
matrix that is all zeros.

zmat: (optional) A matrix of covariate values with a row for each
discrete value to be smoothed and a column for each covariate.
By default this is a column of one’s.

Lfdobj: (optional) The order of derivative, or a linear differential op-
erator, whose values are to be penalized in the smoothing phase.
By default Lfd is set to be the third derivative.

lambda: (optional) The smoothing parameter controlling size of the
roughness penalty. It is zero by default.

conv: (optional) A small positive constant that controls the level of
convergence of the fitting criterion that is required in the numer-
ical optimization. The default is 0.0001.

iterlim: (optional) The maximum number of iterations allowed. The
default is 20.

dbglev: (optional) An integer controlling the amount of information
displayed for each iteration. By default only the iteration number,
fitting criterion value, and the gradient length are displayed.

Returns: A list object in S-PLUS containing the following information. For
Matlab, each of the objects is returned separately and in the following
order.

Wfdobj: The functional data object defining converged estimate of
the function W (t). Remember that the fit to the data is defined
by exp(W (t), so that object Wfdobj is in fact the natural logarithm
of the fit.

Flist: List object containing (1) Flist$f, the final log likelihood , (2)
Flist$norm, the final norm of gradient.

iternum: the number of iterations.

iterhist: , a matrix containing results for each iteration.

37

3.5 Summary, Evaluation and Plotting Functions

We now detail the functions used to display and summarize functional data
objects.

These inherit the possible arguments of their more generic counterparts.
For example, we have a function called plot.fd, to be described below,
but in fact, you only need to type plot(fd) to invoke this special-purpose
function for plotting functional data objects in the fd class. This means
that you don’t have to remember the extension following the “.”, and you
can expect these functions to do pretty much the same thing as their more
familiar counterparts. Moreover, optional arguments such as “type, lty, xlab,
ylab, main,” and etc. in S-PLUS can also be included in the call.

However, this inheritance only works in S-PLUS for functions that are
classified as “generic”, and trouble can always be avoided by specifying the
complete name. For example, the function mean is not generic, so that you
will have to always specify mean.fd. But the new Version 5 of S-PLUS is
another matter, and not considered in these notes.

Also provided is function eval.fd for evaluating a functional data object
at specified argument values. This can be useful for customizing plots and
other applications where these plotting functions don’t do the job required.

3.5.1 plot.fd, plot or plot fd

These functions are designed to plot functional data objects or their deriva-
tives, either replication by replication, or all replications simultaneously.

Here we must confess to a bad design decision made in the early
stages of developing these functions. The generic plot function
put the two arguments matplt and href before the more impor-
tant argument Lfd. This isn’t so much of a problem in S-PLUS,
where argument values can be specified in any order, but it was
an unhappy choice in Matlab, where arguments must be specified
in rigid order. So as of 2001, the argument order is changed as
follows. We’re sorry about this.

plot(fd, Lfd, matplt, href, nx)

plot.fd(fd, Lfd=0, matplt=T, href=T, nx=101, ...)

38

Purpose: To plot a functional data object, or one it its derivatives.

Arguments: fd: (required) A functional data object; that is, a list with the
fd class attribute.

Lfd: (optional) Either an integer of value 0 or higher, or an fd object.
If an integer, it specifies the order of derivative to be evaluated,
0 meaning the functions themselves. If it is a functional data
object, the functions are taken to be weight functions defining a
linear differential operator, and the order of the operator is equal
to the number of functions.

matplt: (optional) A logical variable. If the value is T in S-PLUS or
nonzero in Matlab, all the functions are plotted simultaneously
using the function matplot. If the value is F or zero, respectively,
the plot is interactive: each function is plotted in turn, and a
mouse-click is required to advance to the next plot.

href: A logical variable. If the value is T in S-PLUS or nonzero in Mat-
lab, a horizontal dotted line is plotted through 0 on the ordinate.

nx: The number of points at which the functions are to be evaluated
for plotting. For fairly smooth functions, 101 values are usually
enough, but for functions with a lot of fine detail, this may need
to be increased.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function plot.

Returns: none

3.5.2 cycleplot.fd or cycleplot fd

cycleplot(fd, matplt, nx)

cycleplot.fd(fd, matplt=T, nx=101, ...)

Purpose: Plot a periodic bivariate functional data object, or one of its
derivatives, as a set of cycles.

Arguments: fd: (required) A functional data object containing bivariate
functions, that is, taking on two types of values. The basis must
be of type fourier.

39

matplt: (optional) A logical variable. If the value is T, all the functions
are plotted simultaneously using the function matplot. If the
value is F, the plot is interactive: each function is plotted in turn,
and a mouse-click is required to advance to the next plot.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting. For fairly smooth functions, 101 values are
usually enough, but for functions with a lot of fine detail, this may
need to be increased.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function plot.

Returns: none

3.5.3 lines.fd or line

line(fd, Lfd, nx)

lines.fd(fd, Lfd=0, nx=101, ...)

Purpose: Similar to plot.fd or plot, but this adds function plots to an
existing plot.

Arguments: fd: (required) A functional data object; that is, a list with the
fd class attribute.

Lfd: (optional) Either an integer of value 0 or higher, or an fd object.
If an integer, it specifies the order of derivative to be evaluated,
0 meaning the functions themselves. If it is a functional data
object, the functions are taken to be weight functions defining a
linear differential operator, and the order of the operator is equal
to the number of functions.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function lines.

Returns: none

40

3.5.4 print.fd or display

display(fd)

print.fd(fd, ...)

Purpose: Print a functional data object. The usual method for printing an
array is used for the “coefs” argument, and the characteristics of the
basis also printed.

Arguments: fd: (required) A functional data object; that is, a list with the
fd class attribute.

...: (S-PLUS only) The additional arguments for controlling the plot
available in the regular function print.

Returns: none

3.5.5 summary.fd (S-PLUS only)

summary.fd(fd,...)

Purpose: Summarize a functional data object. The dimensions of the “data”
array are printed, along with the characteristics of the basis object.

Arguments: fd: (required) A functional data object; that is, a list with the
fd class attribute.

Returns: none

3.5.6 eval.fd or eval fd

These functions evaluate a functional data object for each of a strictly in-
creasing set of values.

eval_fd(evalargs, fd, Lfd)

eval.fd(evalargs, fd, Lfd=0)

Purpose: To evaluate a functional data object at specified argument values.

Arguments: Note that the first two arguments may be interchanged.

41

evalargs: (required) A vector of argument values at which the func-
tions in the functional data object are to be evaluated.

fd: (required) A functional data object; that is, a list with the fd class
attribute.

Lfd: (optional) Either an integer of value 0 or higher, or an fd object.
If an integer, it specifies the order of derivative to be evaluated,
0 meaning the functions themselves. If it is a functional data
object, the functions are taken to be weight functions defining a
linear differential operator, and the order of the operator is equal
to the number of functions.

Returns: An array of 2 or 3 dimensions containing the function values. The
first dimension corresponds to the argument values in “evalargs”, the
second to replications, and the third if present to functions.

There are also functions eval.monfd and eval monfd that are set up in
the same way that will evaluate a strictly monotonic function defined by a
functional data object. These functions do not apply the multiplier β1 or the
constant term defined by β0 in (7), however.

3.5.7 eval.bifd or eval bifd

eval_bifd(sevalarg, tevalarg, bifd, sLfd, tLfd)

eval.bifd(sevalarg, tevalarg, bifd, sLfd = 0, tLfd = 0)

Purpose: To evaluate a bivariate functional data object at specified argu-
ment values s and t.

Arguments: Note that the first three arguments may also occur in the order
bifd, sevalarg, tevalarg.

sevalarg: (required) A vector of argument values for the first argument
s of the functions in the functional data object that are to be
evaluated.

tevalarg: (required) A vector of argument values for the second argu-
ment t of the functions in the functional data object that are to
be evaluated.

42

bifd: (required) A bivariate functional data object; that is, a list

(S-PLUS) or struct (Matlab) with the bifd class attribute.

sLfd: (optional) An integer of value 0 or higher, or a linear differential
operator. This specifies the order of derivative with respect to the
first argument s that is to be evaluated, 0 meaning the functions
themselves.

tLfd: (optional) An integer of value 0 or higher, or a linear differential
operator. This specifies the order of derivative with respect to the
second argument t that is to be evaluated, 0 meaning the functions
themselves.

Returns: An array of 2, 3, or 4 dimensions containing the function values.
The first dimension corresponds to the argument values in “sevalarg”,
the second to argument values in “tevalarg”, the third if present to
replications, and the fourth if present to functions.

3.6 Data Manipulation Functions

In addition to the display and summary functions mentioned above, it is
also possible to perform various manipulations of functional data objects.
These include subsetting, the elementary arithmetic operations, and taking
derivatives.

3.6.1 Subsets of Functional Data Observations

If you want to plot, print, or summarize only a portion of the data, you will
want to select a subset of the replications or variables, just as you can do
for rows and columns of matrices. Note that there are either 1 or 2 indices
in the function call depending on the number of dimensions of the “coefs”
array. For example, if there are multiple replications and multiple functions,
fd[2,] in S-PLUS or fd(2,:) in Matlab selects the second replication and
all functions, and fd[,1:2] or fd(:,1:2) selects all replications and the
first two functions in S-PLUS and Matlab, respectively. If there is only one
function, then fd[1:10] or fd(1:10) would select the first ten replications.

43

3.6.2 Arithmetical Operations

Functional data objects can be added, subtracted, multiplied, and divided.
Moreover, for each of these operations, either argument may be a scalar
rather than a functional data object. Thus, arithmetic for functional data
objects behaves much like that for matrices.

Indeed, adding and subtracting involve just adding and subtracting the
coefficient matrices. This means that the fd objects must have the same
basis.

In the case of multiplication and division, this is performed by evaluating
the two objects on a fine grid, performing the operation on the values, and
creating a new functional data object from these values. The basis used for
the first argument is used for the result. The operations

sqrt.fd(fd), deriv.fd(fd), fd^power

are also constructed in this way. It is up to the user to ensure that these
operations can actually be carried out. For example, you must be sure that
the denominator fd object is nowhere zero.

3.7 Registration Functions

In important initial step in a functional data analysis can be the lining up
of salient features of the functions, a process called registration. This is
described in Chapter 5.

3.7.1 Landmark Registration

The simplest registration process to understand and to implement is land-
mark registration, in which we specify the argument values associated with
each feature for each curve. In addition, we specify the same values for some
standard or reference curve. This is often the mean curve, but it may be
some specific curve judged to be especially typical that we want to serve as
our “gold standard”.

In landmark registration, we warp time for each curve so that, with re-
spect to this warped time, denoted by h(t), the timing of the features are
identical to those for the reference curve. That is, if t0f indicates the ref-
erence curve timing for landmark number f , and tif is the corresponding

44

timing for curve i, then we require that

hi(t0f) = tif

where hi is the warping function for this curve.
We assume here that these landmark timings are all in the interior of the

interval over which the curves are observed. The ends of the interval serve
automatically as landmarks, and do not have to be included.

The following function landmarkreg has as arguments an fd object for
the curves, an fd object for the reference curve, a matrix with a row for each
curve and a column for each landmark containing the landmark values tif for
the curves, and a vector containing the landmark timings for the reference
curve.

The function estimates the warping functions using the S-PLUS standard
function smooth.spline. A fifth optional parameter is available to control
the amount of smoothing used in the spline fitting. Note that it is vital that
the warping functions be strictly monotonic, and if any estimated warping
function fails this condition, a warning message is output. In this event,
the registration should be repeated with a larger value of the smoothing
parameter.

landmarkreg(fd, fd0, ximarks, x0marks, sparval)

landmarkreg(fd, fd0, ximarks, x0marks=xmeanmarks,

wbasis = basis, Lfd=0,

sparval=1e-10, monwrd=F, sparval=1e-10)

Purpose: To register curves using landmarks.

Arguments: fd: A functional data object for the curves to be registered.

fd0: A functional data object for the reference curve.

ximarks: A matrix with a row for each curve and a column for each
landmark containing the landmark timings tif .

x0marks: A vector containing landmark timings t0f for the reference
curve. By default these are the average timings.

wbasis: A basis object used to define the warping functions. By de-
fault, the basis used in fd is used.

45

Lfd: Either a nonnegative integer of a linear differential operator to
be applied to the functions before registering them.

monwrd: If T in S-PLUS or 1 in Matlab, the warping function is
estimated using a monotone smoothing method; otherwise, a reg-
ular smoothing method is used, which is not guaranteed to give
strictly monotonic warping functions. However, using monotone
smoothing will substantially increase the amount of computation
required.

sparval: A smoothing parameter controlling the amount of smoothing
in estimating the warping functions hi. By default it is the small
value 10−10.

Returns: fdreg: A functional data object for the registered curves.

warpfd: A functional data object defining the warping functions.

3.7.2 A Global Registration Function

This type of registration uses the whole curve, and does not require the esti-
mation of landmarks. The technique is described in Ramsay and Li (1998).
Further details and more recent developments can be found in Chapter 7 of
Ramsay and Silverman (2002).

registerfd(y0fd, yfd, Wfd0, Lfdobj, lambda,

conv, iterlim, dbglev, periodic, crit)

registerfd(y0fd, yfd, Wfd0, Lfdobj=2, lambda=1,

conv=1e-2, iterlim=10, dbglev=1,

periodic=F, crit=2)

Purpose: Registers the curves in argument yfd to the target function in ar-
gument yfd0, and returns a functional data object defining a set func-
tions that define the strictly monotonic warping functions that register
the curves to the target. The warping functions are strictly monotonic,
so these estimated functions define these warping functions in the same
way as for monotone smoothing functions, defined in (7).

Arguments: y0fd: (required) A functional data object defining the tar-
get. It must be univariate and it must define a single functional
observation.

46

yfd: (required) A functional data object defining the functions to be
registered to yfd0. Multiple functions are permitted.

Wfd0: (required) An initial estimate of the functional data object that
is to be estimated for each curve that defines the warping function
for that curve. This can usually be defined by a coefficient matrix
that is all zeros.

Lfdobj: (optional) The order of derivative, or a linear differential op-
erator, whose values are to be penalized in the smoothing phase.
By default Lfd is set to be the second derivative.

lambda: (optional) The smoothing parameter controlling size of the
roughness penalty. It is zero by default.

conv: (optional) A small positive constant that controls the level of
convergence of the fitting criterion that is required in the numer-
ical optimization. The default is 0.0001.

iterlim: (optional) The maximum number of iterations allowed. The
default is 20.

dbglev: (optional) An integer controlling the amount of information
displayed for each iteration. By default only the iteration number,
fitting criterion value, and the gradient length are displayed.

periodic: (optional) A logical variable in S-PLUS or a variable taking
only 0 or 1 in Matlab. If T or 1, the functions are considered to be
periodic, in which case a constant can be added to all argument
values after they are warped. Otherwise the functions are assumed
non-periodic, and the arguments are not shifted. The default is F
or 0.

crit: (optional) An integer that is either 1 or 2 that indicates the nature
of the continuous registration criterion that is used. If 1, the
criterion is least squares, and if 2, the criterion is the minimum
eigenvalue of a cross-product matrix. In general, criterion 2 is to
be preferred. The default is 2.

Returns: A list object in S-PLUS containing the following information. For
Matlab, each of the objects is returned separately and in the following
order.

47

Wfdobj: The functional data object defining converged estimate of
the function W (t). Remember that the fit to the data is defined
by exp(W (t), so that object Wfdobj is in fact the natural logarithm
of the fit.

Flist: List object containing (1) Flist$f, the final log likelihood , (2)
Flist$norm, the final norm of gradient.

iternum: the number of iterations.

iterhist: , a matrix containing results for each iteration.

3.8 Elementary Statistical Functions

These are functions that compute functional versions of elementary statistical
descriptions such as means, standard deviations, variances, covariances, and
correlations. A function to subtract the mean function from the each curve
is also provided.

3.8.1 mean.fd or mean

mean(fd)

mean.fd(fd)

Purpose: To evaluate the point-wise mean of a set of functions in a func-
tional data object.

Arguments: fd: A functional data object.

Returns: A functional data object with a single replication that contains
the mean of the one or several functions in the fd object.

3.8.2 std.fd or std

std(fd)

std.fd(fd)

Purpose: To evaluate the point-wise standard deviation of a set of functions
in a functional data object.

Arguments: fd: A functional data object.

48

Returns: A functional data object with a single replication that contains
the standard deviation of the one or several functions in the fd object.

3.8.3 center.fd or center

center(fd)

center.fd(fd)

Purpose: To subtract the pointwise mean from each of the functions in a
functional data object; that is, to center them on the mean function.

Arguments: fd: A functional data object.

Returns: A functional data object with same dimensions as “fd” that con-
tains the centered versions of the functions in the object fd.

3.8.4 var.fd or var

var(fdx, fdy)

var.fd(fdx, fdy = fdx)

Purpose: To compute the variance and covariance functions for functional
data.

Arguments: fdx: (required) A functional data object.

fdy: (optional) An optional second functional data object.

Returns: A bivariate functional data object that contains the variance and,
if there are more than one function in “fd”, or if there is more than
argument in the call to var.fd, the covariance functions. Results differ
according to the number of arguments in the call.

• One argument: If “fdx” contains only replications of a single func-
tion, the coefficient matrix for the bifd object has two dimensions.
If “fdx” contains function replications for more than one function,
the bifd object has four dimensions. The third dimension has
length 1, and the fourth dimension has length equal to the num-
ber of possible pairs of functions. Pairs are enumerated (1,1),

49

(2,1), (2,2), (3,1) ... as is usual for the lower triangle of a sym-
metric matrix. For each pair the corresponding coefficients for the
covariance function (or variance function if the two functions in
the pair are the same), are given.

• Two arguments: If both arguments are functional data objects
containing replications of a single function, then the covariance
function is returned. If not, an error message is returned.

3.9 Principal Components Analysis

We now turn to principal components analysis, an exploratory analysis that
tends to be an early part of many projects. The pca.fd function S-PLUS or
pca function in matlab describes below computes the principal component
functions, eigenvalues, and principal component scores described in Chapter
6, and also incorporates the regularization concept described in Chapter 7.
The adjective phrase “principal component” being somewhat unwieldy, we
opt for the term “harmonic” in the following description

3.9.1 pca.fd or pca

pca(fd, nharm, lambda, Lfd, centerfns)

pca.fd(fd, nharm = 2, lambda = 0, Lfd = 2, centerfns = T)

Purpose: To compute the harmonics, the eigenvalues, and harmonic scores
for functional data. If more than one function is found, these are com-
bined into a composite function.

Arguments: fd: (required) A functional data object.

nharm: (optional) The number of harmonics or principal components
desired. The default is two.

lambda: (optional) A non-negative real number specifying the smooth-
ing parameter value used to smooth or regularize the harmonics.
This is zero by default.

Lfd: (optional) The order of derivative, or a linear differential operator,
whose value is to be penalized; two by default.

50

centerfns: (optional) A logical variable. If T, the pointwise mean func-
tion is subtracted from each function before computing the har-
monics.

Returns: In S-PLUS a list, and in Matlab a struct with the following
members:

harmfd: A functional data object containing the “nharm” harmonic,
principal component, or eigenfunctions. If there is more than one
variable in the “fd” argument, there is a harmonic corresponding
to each function, and in this case the coefficient matrix has three
dimensions.

values: The complete set of eigenvalues, equal in number to the num-
ber of basis functions, in the PCA.

scores: The principal component scores for each replication and har-
monic.

varprop: The proportion of variance accounted for by each harmonic.

meanfd: The mean functional data object.

3.9.2 plot.pca.fd or plot pca

plot_pca(pcastr, nx, pointplot, harm, expand, cycle) plot.pca.fd(pcafd,

nx = 128, pointplot = T, harm = 0,

expand = 0, cycle = F, ...)

Purpose: Plots the harmonics of a functional principal component analysis.

Arguments: pcafd: (S-PLUS) or pcastr: (Matlab) (required) In S-PLUS
an object of class pcafd containing the results of a call to pca.fd.
In Matlab, a struct object containing the results of a call to pca.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting. For fairly smooth functions, 101 values are
usually enough, but for functions with a lot of fine detail, this may
need to be increased.

pointplot: (optional) If pointplot=T, then the harmonics are plotted
as + and - otherwise lines are used. Another thing that needs
doing is an arrowplot option.

51

harm: (optional) If harm = 0 (the default) then all the computed
harmonics are plotted. Otherwise those in ’harm’ are plotted.

expand: (optional) If expand =0 then effect of +/- 2 standard devi-
ations of each principal component are given otherwise the factor
expand is used.

cycle: (optional) If cycle=T and there are 2 variables then a cycle plot
will be drawn. If the number of variables is anything else, cycle
will be ignored.

...: (optional) (S-PLUS only) The additional arguments for controlling
the plot available in the regular function plot.

Returns: none

3.9.3 varmx.pca.fd or varmx pca

varmx_pca(pcastr, nharm, nx) varmx.pca.fd(pcafdlist, nharm =

scoresd[2], nx=50)

Purpose: Apply varimax rotation to the first nharm components of a ’pca.fd’
object.

Arguments: pcafd: (S-PLUS) or pcastr: (Matlab) (required) In S-PLUS
an object of class pcafd, and in Matlab a struct, containing the
results of a call to pca.

nharm: (optional) The number of harmonics to be rotated. The de-
fault is the number available in pcafdlist for pcastr.

nx: (optional) The number of points at which the functions are to be
evaluated for plotting. For fairly smooth functions, 101 values are
usually enough, but for functions with a lot of fine detail, this may
need to be increased.

Returns: In both languages the return is the same structure and class as
for the principal components analysis function itself.

52

3.10 The Linear Model Functions

The linear model function described below fits the three types of linear models
described in Chapters 9, 10, and 11. At this point the function can only
handle a single functional independent variable. The regularization features
described in Chapters 10 and 11 are incorporated.

3.10.1 linmod.fd or linmod

linmod(xfd, yfd, wtvec, xLfd, yLfd, xlambda, ylambda, zmatrnk)

linmod.fd(xfd, yfd, wtvec=rep(1,ncurves),

xLfd=2, yLfd=2, xlambda=0, ylambda=0, zmatrnk=p)

Purpose: To fit a linear model. Three cases are considered:

• functional dependent variable and multivariate independent vari-
able, and the functional dependent variable can be multivariate
or vector-valued.

• multivariate dependent variable and functional independent vari-
able,

• functional dependent variable and a single functional independent
variable.

Arguments: xfd: (required) A data object for the independent variable
that may be either of fd class or a matrix.

yfd: (required) A data object for the dependent variable that may be
either of fd class or a matrix.

wtvec: (optional) A vector of weights for the replications. By default
these are 1’s.

xLfd: (optional) The order of derivative, or a linear differential opera-
tor, whose value are to be penalized for the independent variable;
two by default.

yLfd: (optional) The order of derivative, or a linear differential oper-
ator, whose value are to be penalized for the dependent variable;
two by default.

xlambda: (optional) A smoothing parameter for the independent vari-
able. This is zero by default.

53

ylambda: (optional) A smoothing parameter for the dependent vari-
able. This is zero by default.

zmatrnk: (optional) The actual rank of independent variable matrix
for the function DV/multivariate IV case. This is permitted to be
less than the number of columns of this matrix.

Returns: A list in S-PLUS or a struct in Matlab with the following mem-
bers:

alpha: Intercept values. If the dependent variable is multivariate,
there is one for each column of the matrix input as argument
“yfd”. Otherwise this is a single constant.

regfd: A functional data object for the regression function. The struc-
ture of this object depends on the three cases:

• functional DV/multivariate IV: a univariate functional data
object with a replication corresponding to each column dimen-
sion in the matrix input for argument “xfd”, and a function
(3rd dimension in the coefficient matrix) for each function in
the DV,

• multivariate DV/functional IV: a univariate functional data
object having a replication correponding to each column of
the matrix input as argument “yfd”.

• functional DV/functional IV: a bivariate functional object of
the bifd class.

54

4 Installation Notes

If you are reading this, you probably have already visited one of our web
sites at

http://www.psych.mcgill.ca/faculty/ramsay.html

http://www.statistics.bristol.ac.uk/~bernard

4.1 S-PLUS Installation

The S-PLUS software described in these notes is available at either of these
sites.

You must obtain the files named “FDAfuns.s”, contained the actual S-
PLUS functions.

The first time that you invoke S-PLUS to use these functions, you must
use the command

source(’FDAfuns.s’)

to set up the S-PLUS FDA functions.
Note that you may also want to use the Pspline module for estimating

derivatives by spline smoothing. This can be obtained from the web site

http://www.stat.cmu.edu

or from Jim Ramsay’s web site, or by ftp from

ego.psych.mcgill.ca/pub/ramsay

The same instructions apply for the Lspline module.

4.2 Matlab Installation

to be added

55

5 Some Sample Functional Data Analyses

In this section we give some examples of functional data analyses, with the
goal being to show how to use the functional data objects and the functional
data functions described in the previous sections. In each of the analyses
shown, the actual Matlab and S-PLUS commands are given in typewriter
font. In each case, it will be assumed that the data arrays have already been
input. In the code distributed with these notes, the raw data files and the
commands to input the data in them are included, however.

We include both the Matlab and S-PLUS code, and in that order.

5.1 The Monthly Weather Data

These data involve two samples of functional data, one for temperature and
one for precipitation. They are set up as two functional data objects rather
than one object containing two functions because the measures involved,
degrees Celsius and millimetres, are different. Each set of data is input into
a 35 by 12 matrix, there being 35 different weather stations and 12 months.
The measures are taken as positioned at the middle of each month. these data
are, of course, periodic, and therefore will be expanded in terms of the first
12 fourier series functions. The names of the weather stations, and symbols
for the months are input as the dimnames attributes of these matrices.

We first read in the temperature and precipitation data from a file. Un-
fortunately, the data are set up in the file the wrong way, and we need to
transpose to have rows corresponding to the monthly sampling points, and
the columns to replications. At the same time, we specify the sampling
points themselves as the mid-points for the months. Finally, let’s assume
that the weather station names have already been defined in character array
meteonames.

Matlab:

fid = fopen(’temp.dat’,’rt’);

tempvec = fscanf(fid,’%f’);

tempmat = reshape(tempvec, [12, 35]);

fid = fopen(’prec.dat’,’rt’);

precvec = fscanf(fid,’%f’);

precmat = reshape(precvec, [12, 35]);

56

S-PLUS:

tempmat <- t(matrix(scan(’temp.dat’), 35, 12, byrow=T))

precmat <- t(matrix(scan(’prec.dat’), 35, 12, byrow=T))

weathertime <- seq(0.5, 11.5, 1)

dimnames(tempmat) <- list(months, meteonames)

dimnames(precmat) <- list(months, meteonames)

Now we have to set up the Fourier basis object to be combined with the
discrete temperature data to make the temperature fd object. The following
statement specifies the fourier series basis, sets up the range spanning the
interval [0,12], and asks for 12 basis functions. By default the period is set
to 12, the range of possible argument values defined by the first argument.
Moreover, even though we ask for 12 basis functions, the fourier basis always
involves an odd number of basis functions; that is, the constant function
plus a number of sine/cosine pairs. We will actually work with 13 basis
functions in this problem. This is more than the number of sampling points,
but data2fd will take care of this. The result of the following statement is
a basis object called monthbasisfd.

monthbasis = create_fourier_basis([0,12], 12);

monthbasis <- create.fourier.basis(c(0,12), 12)

Now we create the temperature and precipitation functional data objects,
called tempfd, and precfd, respectively. The argnames argument sets up the
labels for the tt fdnames member of the object.

tempfd = data2fd(tempmat, monthtime, monthbasis);

precfd = data2fd(precmat, monthtime, monthbasis);

tempfd <- data2fd(tempmat, monthtime, monthbasisfd

argnames=c(’Months’, ’Station’, ’Deg C’))

precfd <- data2fd(precmat, monthtime, monthbasisfd

argnames=c(’Months’, ’Station’, ’mm’))

Lets have a look at what we have. First we plot the temperature curves,
and then print out a summary. Figure 2 shows the temperature functions
resulting from the plot command. Note that the plotting function automat-
ically labels axes using the information in the fdnames member of tempfd.

57

Temperature Functions

Months

D
eg

. C

0 2 4 6 8 10 12

-3
0

-2
0

-1
0

0
10

20

Figure 2: The 35 temperature functions resulting from expanding monthly
mean temperatures in terms of the first 12 terms of the fourier series.

plot(tempfd);

title(’Temperature Functions’);

display(tempfd)

plot(tempfd, main="Temperature Functions")

summary(tempfd)

The output from the summary command in S-PLUS is

Dimensions of coefficient matrix:

[1] 12 35

Basis:

Type: fourier

Range: 0 to 12

Number of basis functions: 12

Period: 12

Here’s a challenge: How can we plot the forcing functions defined by

58

the linear differential operator L = (6/π)D + D3, shown in Chapter 1? We
would need to call the eval.fd function twice, compute the weighted sum,
and plot; four commands in short. But here’s another approach. Let’s define
the linear differential operator itself, since we will need it later. We will call
it harmaccelLfd, for “harmonic acceleration”. It is defined by three weight
functions, each weighting one of the derivatives of orders 0, 1, and 2. Since
each weight function is constant, we only need the constant basis to set this
up. Matrix Lcoef contains the coefficients for this simple expansion. It is 1
by 3 since there is a single basis function, 1, and three replications.

Lbasis = create_constant_basis([0,12]);

Lcoef = [0,(pi/6)^2,0];

harmaccelLfd = fd(Lcoef, Lbasis);

Lbasis <- create.constant.basis(c(0,12))

Lcoef <- matrix(c(0, (pi/6)^2, 0),1,3)

harmaccelLfd <- create.fd(Lcoef, Lbasis)

Now plotting the forcing functions is simple. Matlab requires a separate
command to add a title, while S-PLUS can include the title as an argument
for plot.

plot(tempfd, harmaccelLfd);

title(’Temperature Forcing Functions’)

plot(tempfd, harmaccelLfd,

main="Temperature Forcing Functions")

The next phase is to look at some basic statistical descriptions of the
data. The following commands set up the two mean functions as functional
data objects and plot them. Results are in Figure 3.

tempmeanfd = mean(tempfd);

precmeanfd = mean(precfd);

subplot(1,2,1), plot(tempmeanfd), axis(’square’)

subplot(1,2,1), plot(precmeanfd), axis(’square’)

tempmeanfd <- mean.fd(tempfd)

59

Temp. Mean

Months

D
eg

. C

0 2 4 6 8 10 12

-1
5

-1
0

-5
0

5
10

15

Prec. Mean

Months

D
eg

. C

0 2 4 6 8 10 12

55
60

65
70

75

Figure 3: The mean functions for temperature and precipitation for the
monthly weather data.

precmeanfd <- mean.fd(precfd)

par(mfrow=c(1,2),pty="s")

plot(tempmeanfd)

plot(precmeanfd)

Now we compute the variance functions for the two measures, and the
covariance between them. Each of these sets up a bifd object. We didn’t
design a plotting function specifically for objects of this nature (there being
a lot of different ways to do this), so instead we make tables of each of them
using the eval.bifd function. Figure 4 plots these tables as contour plots.

Matlab: (plot the temperature covariance only)

tempvarbifd = var(tempfd);

weeks = linspace(0,12,53);

tempvarmat = eval(tempvarbifd, weeks, weeks);

subplot(1,1,1);

surf(tempvarmat);

xlabel(’Weeks’), ylabel(’Weeks’), zlabel(’Covariance’)

title(’Temperature Variance-Covariance Function’)

60

Temp. Variance

Weeks

W
ee

ks

0 10 20 30 40 50

0
10

20
30

40
50

20

20

20

20

40

40

40

40

40

40

4040

60

60

60

60

80

80

80

80

Prec. Variance

Weeks

W
ee

ks

0 10 20 30 40 50

0
10

20
30

40
50

1000

1000

1000

1000

1000

10002000

2000

2000

20003000

3000

3000

3000

4000

Temp.-Prec. Covariance

Weeks

W
ee

ks

0 10 20 30 40 50

0
10

20
30

40
50

100

100

100

100200

200

200

200

300

300

300

300

400

400

400

400

Figure 4: The variance surfaces for temperature and precipitation, and the
covariance surface for their relationship.

S-PLUS:

tempvarbifd <- var.fd(tempfd)

precvarbifd <- var.fd(precfd)

temppreccovbifd <- var.fd(tempfd, precfd)

weeks <- seq(0,12,length=53)

tempvarmat <- eval.bifd(weeks,weeks,tempvarbifd)

precvarmat <- eval.bifd(weeks,weeks,precvarbifd)

temppreccovmat <- eval.bifd(weeks,weeks,temppreccovbifd)

par(mfrow=c(1,3),pty="s")

contour(tempvarmat, xlab="Weeks", ylab="Weeks",

main="Temp. Variance")

contour(precvarmat, xlab="Weeks", ylab="Weeks",

main="Prec. Variance")

contour(temppreccovmat, xlab="Weeks", ylab="Weeks",

main="Temp.-Prec. Covariance")

Can you figure out how to plot correlation surfaces using standard S-
PLUS functions?

61

Now we get into some heavier analyses. Our first task is to carry out a
principal components analysis of the temperature data. In order to keep the
displays simple, we go for the default two harmonics. But a preliminary peek
at the results convinces us that a little bit of regularization or smoothing of
the eigenfunctions or harmonics would be helpful. We elect to smooth by
penalizing the harmonic acceleration, rather than the curvature, since we
don’t object to simple sinusoidal variation in the harmonics. We also apply
a VARIMAX rotation to the harmonics.

temppcastr = pca(tempfd, 4, 1e-3, harmaccelLfd);

temppcastr = varmx_pca(temppcastr);

temppcalist <- pca.fd (tempfd, Lfd=harmaccelLfd,

nharm=4, lambda=1e-3)

temppcalist <- varmx.pca.fd(temppcalist)

The eigenvalue plot in Figure 5 is produced by these follwing commands.
We have found it informative to plot the log eigenvalues, and to fit a line
by least squares to the log eigenvalues that we don’t intend to look at. This
seems to confirm that there are four main components of variation in the
data. The first reflects variation in annual temperature, and the second
the variation from the average of the difference between the mid-winter and
mid-summer temperatures.

tempharmeigval = temppcastr.eigvals;

x = ones(8,2); x(:,2) = reshape((5:12),[8,1]);

y = log10(tempharmeigval(5:12));

c = x\y;

plot(1:12, log10(tempharmeigval(1:12)),’-o’, ...

1:12, c(1)+c(2).*(1:12), ’:’)

xlabel(’Eigenvalue Number’), ylabel(’Log10 Eigenvalue’)

tempharmeigval <- temppcalist$values

plot(1:12, log10(tempharmeigval[1:12]), type=’b’,

xlab=’Eigenvalue Number’, ylab=’Log10 Eigenvalue’)

abline(lsfit(5:12, log10(tempharmeigval[5:12])), lty=2)

62

The following plotting commands produce the harmonic scores plotted in
Figure 6. We aren’t surprised to see the marine stations up in the upper-right
“high annual/low variation” quadrant, and Resolute at the lower extreme of
the first harmonic.

tempharmscr = temppcastr.harmscr;

plot(tempharmscr(:,1),tempharmscr(:,2), ’o’)

xlabel(’Scores on Harmonic 1’)

ylabel(’Scores on Harmonic 2’)

text(tempharmscr(:,1),tempharmscr(:,2),meteonames)

tempharmscr <- tempharmlist[[3]]

par(mfrow=c(1,1),pty="s")

plot(tempharmscr[,1],tempharmscr[,2],type="n",

xlab="Harm. I",ylab="Harm. 2")

text(tempharmscr[,1], tempharmscr[,2],

dimnames(tempharmscr)[[1]])

Now how about a little linear modeling. We start with the simple model
in which the temperature functions are predicted by their corresponding
weather zones. First we set up the indices for the weather zones:

atlindex = [1,2,3,4,5,6,7,8,9,10,11,13,14,16];

pacindex = [25,26,27,28,29];

conindex = [12,15,17,18,19,20,21,22,23,24,30,31,35];

artindex = [32,33,34];

atlindex <- c(1,2,3,4,5,6,7,8,9,10,11,13,14,16)

pacindex <- c(25,26,27,28,29)

conindex <- c(12,15,17,18,19,20,21,22,23,24,30,31,35)

artindex <- c(32,33,34)

Next we set up the design matrix. It has five columns, the first corre-
sponding to the mean function, and the remainder corresponding to zone
effects.

zmat = zeros(35,5);

zmat(: ,1) = 1;

63

Months

H
ar

m
on

ic

0 2 4 6 8 10 12

-1
.0

-0
.5

0.
0

0.
5

1.
0 •

•
• • • • • • • • • •

1:12

te
m

ph
ar

m
lis

t[[
2]

]

2 4 6 8 10 12

0
20

40
60

80

Figure 5: The left panel displays the two principal component functions or
harmonics for the monthly temperature data. The right panel displays the
twelve eigenvalues in the principal components analysis.

64

Harm. I

H
ar

m
. 2

-20 -10 0 10

-5
0

5

St. John’s

Charlottetown
Halifax

Sydney

Yarmouth

Fredericton

Arvida
MontrealQuebec City

Schefferville

Sherbrooke

Kapuskasing

London

OttawaThunder Bay

Toronto

Churchill

The PasWinnipegPrince Albert
Regina

Beaverlodge

Calgary

Edmonton

Kamloops
Prince George

Prince Rupert

Vancouver

Victoria

Dawson

Whitehorse
Frobisher Bay

Inuvik

Resolute

Yellowknife

Figure 6: The names of the weather stations are plotted in the positions
defined by their scores on the first two harmonics.

zmat(atlindex,2) = 1;

zmat(pacindex,3) = 1;

zmat(conindex,4) = 1;

zmat(artindex,5) = 1;

zmat <- matrix(0,35,5)

zmat[,1] <- 1

zmat[atlindex,2] <- 1

zmat[pacindex,3] <- 1

zmat[conindex,4] <- 1

zmat[artindex,5] <- 1

dimnames(zmat) <- list(meteonames,

c("Mean", "Atlantic", "Pacific", "Continental", "Arctic"))

Now we fit the linear model. Note that the design matrix is actually of
rank 4, so we have to say so in the function call. The output of the function
is a functional data object containing five functions: the mean function, the
atlantic zone effect, the pacific zone effect, the continental zone effect, and

65

the artic zone effect.

templinstr = linmod(zmat, tempfd);

templinlist <- linmod.fd(zmat, tempfd, zmatrnk=4)

We can now use the functional data subscripting feature to plot the mean
function first, and then the zone effects. You can see the zone effects in Figure
7.

tempregfd = linmodstr.reg;

plot(tempregfd), title(’Regression Functions’)

for i=1:4

subplot(2,2,j), line(tempregfd[i+1]);

end

tempregfd <- templinlist[[2]]

par(mfrow=c(1,1),pty="m")

plot(tempregfd[1],xlab="Month",ylab="Deg. C", main="Mean Fn.")

par(mfrow=c(2,2),pty="m")

for (i in 1:4) plot(tempregfd[i+1],xlab="Month",ylab="Deg. C",

main=dimnames(zmat)[[2]][i+1])

Next we try a scale dependent variable, log annual precipitation, and use
as a functional independent variable temperature.

logannprec = log10(sum(precmat)’);

logannprec <- as.matrix(log10(apply(precmat,2,sum)))

Now we carry out the linear model. As discussed in the book, some
smoothing is required in order to not waste too many degrees of freedom, and
in order to aid interpretation. We again penalize harmonic acceleration. The
smoothing parameter used, after some experimentation, (but cross-validation
could also have been used) was 1.

linmodstr = linmod(tempfd, logannprec, ones(35,1), ...

harmaccelLfd, 0, 1, 0);

linmodlist <- linmod.fd(tempfd, logannprec,

xLfd=harmaccelLfd, xlambda = 1)

66

Atlantic

Month

D
eg

. C

0 2 4 6 8 10 12

0
5

10

Pacific

Month

D
eg

. C

0 2 4 6 8 10 12

2
3

4
5

6
7

Continental

Month

D
eg

. C

0 2 4 6 8 10 12

-1
5

-1
0

-5
0

5
10

Arctic

Month

D
eg

. C

0 2 4 6 8 10 12

-1
0

-8
-6

-4
-2

Figure 7: The four zone effects resulting from predicting temperature from
climate zone.

The intercept emerged as 3.06, corresponding to just over one meter of
annual rainfall. The regression function is shown in Figure 8, where we see
that annual temperature seems to be determined by how low the temperature
is in February and August, and how high the temperature is in October. In
fact, this neatly fits the temperature profile of Prince Rupert, the station
with the highest precipitation by far.

regressionfd = linmodstr.reg;

plot(regressionfd);

xlabel(’\fontsize{16} Month’)

ylabel(’\fontsize{16} Regression Function Value’)

regressionfd <- linmodlist[[2]]

plot(regressionfd, type="l", cex=1,

xlab="Month", ylab="Regression Function Value")

Our final linear model involves predicting the complete precipitation func-
tion from the temperature function. This time the regression function will

67

Month

R
eg

re
ss

io
n

F
un

ct
io

n
V

al
ue

0 2 4 6 8 10 12

-0
.0

2
-0

.0
1

0.
0

0.
01

0.
02

0.
03

0.
04

Figure 8: The regression function for predicting log annual precipitation from
the temperature function.

be bivariate. Some smoothing is required for both arguments in this case.
the intercept in this case is a regular function. The plots of the intercept
function and the bivariate regression function are given in Figure 9.

Matlab:

linmodstr = linmod(tempfd, precfd, ones(35,1), ...

harmaccelLfd, harmaccelLfd, 1, 10);

alphafd = linmodstr.alpha;

regbifd = linmodstr.reg;

subplot(1,2,1)

plot(alphafd);

subplot(1,2,2)

regbifdmat = eval_bifd(regbifd, weeks, weeks);

surf(regbifdmat)

xlabel(’Week’), ylabel(’Week’), zlabel(’Regression Function’)

S-PLUS:

linmodlist <- linmod.fd(tempfd, precfd,

68

Intercept Function

Month
0 2 4 6 8 10 12

10
0

12
0

14
0

16
0

18
0

10 20 30 40 50

X
10

20
30

40
50

Y

-1
5-1

0-5
 0

5
10

15
Z

Regression Function

Figure 9: The left panel displays the intercept function resulting from fitting
the precipitation functions by a linear model using the temperature func-
tions as the independent variable. The right panel shows the corresponding
bivariate regression function.

xLfd = harmaccelLfd, xlambda=1,

yLfd = harmaccelLfd, ylambda=10)

alphafd <- linmodlist[[1]]

regbifd <- linmodlist[[2]]

par(mfrow=c(1,2),pty="s")

plot(alphafd, main="Intercept Function")

regbifdmat <- eval.bifd(weeks, weeks, regbifd)

persp(regbifdmat, xlab=’Weeks’, ylab=’Weeks’)

title("Regression Function")

Of course, in each of these analyses there is much more work to be done
to aid interpretation and evaluate the results. These analyses are designed
only to introduce the use of these functional data objects and functions.

69

5.2 The Lip Data: A Landmark Registration Example

We use these data to illustrate the smoothing and the landmark registration
processes. There are 20 curves, each observed at 51 sampling points. We
want to use a B-spline expansion that has four derivatives, since we will need
to look at acceleration.

First we set up the basis object as a B-spline basis with 31 basis functions
and order 6. The high order is needed because we are going to estimate the
acceleration, and do so by penalizing the size of the fourth derivative.

liptime = (0:0.02:1)’;

lipbasis = create_bspline_basis([0,1], 31, 6);

liptime <- seq(0,1,.02)

lipbasis <- create.bspline.basis([0,1], 31, 6)

Now we set up the discrete data and pass them through data2fd to get
the fd object lipfd.

fid = fopen(’lip.dat’,’rt’);

lipmat = reshape(fscanf(fid,’%f’), [51, 20]);

lipfd = data2fd(lipmat, liptime, lipbasis, ...

{’Normalized time’, ’Replications’, ’mm’};

lipmat <- matrix(scan("lip.dat", 0), 51, 20)

lipfd <- data2fd(lipmat, liptime, lipbasis,

fdnames=c(’Normalized time’, ’Replications’, ’mm’)

An inspection of the second derivatives has already convinced us that
a little smoothing would help. We now apply smoothing by penalizing the
fourth derivative, so as to have acceleration curves with reasonable curvature.

lipfd = smooth(lipfd, lipbasisfd,

4, 1e-12)

lipfd <- smooth.fd(lipfd, lipbasisfd,

Lfd=4, lambda=1e-12)

70

The curves have two distinctive features: a clearly defined minimum at
around t = 0.4 and an elbow at about t = 0.75. We could perhaps see
these more clearly as peaks in the acceleration curve, but for purposes of
illustration, let’s locate these features by eye in each curve.

In addition, we need to locate these features in the mean curve, since we
are going to warp time for each curve so that the location of the features
in warped time corresponds to their timings for the mean curve. But in
this example we let the registration function do this by using the average
landmark timing for each feature.

Here is the code for getting the landmarks for each curve.
Matlab:

nmarks = 2;

lipmarks = zeros(nobs,nmarks);

index = zeros(nmarks,1);

subplot(1,1,1)

for i = 1:nobs

plot(liptime, D2lipmat(:,i), ’o’, [0,1], [0,0], ’:’)

title([’Curve ’,num2str(i)])

for j = 1:nmarks

[x y] = ginput(1);

index(j) = round(x*51);

end

lipmarks(i,:) = liptime(index)’;

end

lipmeanmarks = mean(lipmarks);

S-PLUS:

nmarks <- 2

lipmat <- eval.fd(liptime,lipfd)

lipmarks <- matrix(0,20,nmarks)

par(mfrow=c(1,1), pty="m")

for (i in 1:20) {

plot(liptime, lipmat[,i], main=paste("Curve",i))

abline(v=lipmarksmean,lty=2)

index <- identify(liptime, lipmat[,i], n=nmarks)

lipmarks[i,] <- liptime[index]

71

}

lipmeanmarks <- apply(lipmarks,2,mean)

We have to set up a basis for the warping functions.

wbasis = create_bspline_basis([0,1], 4, 6, [0,lipmeanmarks,1]);

wbasis <- create.bspline.basis(c(0,1), 4, 6, c(0,lipmeanmarks,1))

Now we can register the curves, calling function landmarkreg.

lmrkstr = landmarkreg(lipfd, lipmarks, lipmeanmarks, wbasis);

lipregfd = lmrkstr.regfd;

lipwarpfd = lmrkstr.warpfd;

lipreglist <- landmarkreg(lipfd, lipmeanfd, lipmarks, wbasis)

lipregfd <- lipreglist[[1]]

lipwarpfd <- lipreglist[[2]]

Finally, we plot the unregistered and registered curves, as well as the
warping functions. These plots are in Figures 21 and 11.

subplot(1,2,1)

plot(lipfd), axis(’square’)

title(’Unregistered’)

subplot(1,2,2)

plot(lipregfd), axis(’square’)

title(’Registered’)

par(mfrow=c(1,2), pty="s")

plot(lipfd, main="Unregistered")

abline(v=lipmeanmarks,lty=2)

plot(lipregfd, main="Registered")

abline(v=lipmeanmarks,lty=2)

72

Normalized Time

Li
p

P
os

iti
on

 (
m

m
)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Figure 10: The left panel displays the unregistered lip position curves, and
the right panel the registered versions. The vertical dashed lines are the
timings of the two landmark features, the minimum and the elbow, for the
mean curve.

73

Average Time

0.0 0.4 0.8

0.
0

0.
4

0.
8

Average Time

0.0 0.4 0.8

-0
.0

4
0.

0
0.

04
0.

08

Figure 11: The 20 warping functions estimated by registering the lip curves
using two landmark features.

6 Some Additional Notes on Monotone Smooth-

ing

6.1 Introduction

Monotone functions have played an important role in data analysis since
the development and statistical application of isotone regression techniques
(Bartholomew, 1959; Kruskal, 1965) and the Box-Cox transformation, f(x) =
(xλ − 1)/λ, (Box and Cox, 1964). Wright and Wegman (1980) provide a
broad review of the considerations involved in combining monotonicity with
smoothness, along with some valuable existence results.

Figure 13 displays a monotone smoothing problem. In a study of the
growth of children of 5 to 8 years of age over a 312 day period by Thalange,
et al (1996), it was observed that growth tends to occur in short bursts
rather than continuously. The Figure shows data for a single child, and also
contains two smooth curves: A cubic smoothing spline fit using the GCV
criterion for bandwidth selection, and the monotone smooth described in this

74

Figure 12: The points are heights of a child recorded over a 312 day period.
The solid line is a twice-differentiable monotone smooth of the the data
using the technique described in this paper, and the dotted curve is a cubic
smoothing spline with bandwidth chosen by minimizing the GCV criterion.
The gaps in the record at about 100 and 200 days are due to the Christmas
and Easter vacations, respectively.

paper. Although it would seem reasonable to assume that height increases
monotonically, the smoothing spline is far from monotonic, and especially
in the gap in recording at about 100 days due to the Christmas vacation
period. On the other hand, the data might seem to call for a reduction
in height immediately after Christmas, and thus testing the hypothesis of
monotonicity could be useful.

Monotonicity can be a useful way of regularizing or stabilizing estimated
functions, since the imposition of monotonicity can remove the small-scale
wiggles common near the boundaries or resulting from only lightly smooth-
ing. We see this in Figure 13 where the monotone function behaves more
reasonably than the cubic smoothing spline at both the lower boundary and
over the Christmas period.

Smoothness in a monotone function can be essential. In the growth curve

75

Figure 13: The solid curve is velocity of growth estimated by the first deriva-
tive of the monotone smoothing function shown in Figure 13. The dotted
lines indicate 95% pointwise confidence limits estimated by bootstrapping
residuals.

example, both the first and second derivatives are considered interesting by
specialists, and are especially important in characterizing possible spurts in
growth. Figure ?? displays the estimated growth velocity for the growth
data along with confidence bands estimated by bootstrapping, and shows
the burst-like character of short-term growth. In another context, it can be
important to use the Jacobian when transforming the dependent variable in
a regression or ANOVA problem (Ramsay, 1988), and thus a reasonable first
derivative estimate is required. Although isotonic regression (Bartholemew,
1959; Barlow, et al, 1972) provides an elegant and computationally attractive
technique for estimating monotone functions, the result is a non-differentiable
step function that may not be aesthetically appealing. Finally, it may be that
a variable transformation problem requires inversion of the transformation,
perhaps to estimate argument values at points not corresponding to the orig-
inal observations. That is, the fitted function should have a first derivative
bounded away from zero.

76

Various techniques for estimating smooth monotone transformations have
been developed. They have tended either to be very complex algorithmically,
or to involve some compromise in flexibility. Ramsay (1988), for example,
estimated monotone data transformations by taking linear combinations of
monotone regression splines. The coefficients were constrained to be nonneg-
ative, implying that the fitting procedure involved optimization under linear
inequality constraints. Moreover, constraining coefficients to be positive is
sufficient to ensure monotonicity, but not necessary, so that there is always
the possibility that the fit to the data could be improved by allowing coef-
ficients to go negative while still preserving monotonicity. Kelly and Rice
(1990) developed a related approach involving constrained optimization with
respect to linear combinations of regression splines. Bloch and Silverman
(1997) apply a monotone transformation technique to the estimation of dis-
criminant functions. Friedman and Tibshirani (1984) considered combining
a conventional nonmonotonic smoothing procedure with isotonic regression
to improve the smoothness of the result, and Mammen (1991) studied the
properties of this technique.

Monotone transformation techniques are especially useful in applications
where the observed variables are indicators rather than measurements; that
is, they do not have intrinsic metric properties, but can be taken to reflect
ordering relationships among objects to which values have been assigned.
Indicator variables are prevalent in the social sciences, where there is seldom
any strong argument for believing that variables have interval or ratio scale
properties, but where there is often some reason to consider only smooth
transformations.

The technique discussed in this paper is a computationally convenient
procedure for estimating an arbitrary twice-differentiable strictly monotone
function defined on an interval closed on the left, that may be taken without
loss of generality to be either [0,∞) or [0, 1]. The transformation family can
also be conveniently restricted to various special cases such as the Box-Cox
transform.

6.2 A Differential Equation for Monotone Functions

The notation Dm will be used to refer to the operation of taking the deriva-
tive of order m for m > 0, for the identity operator for m = 0, and for
the partial integration operator D−1f(t) =

∫ t
0 f(s) ds. The class of mono-

77

tone functions discussed in this paper consists of those functions f for which
ln Df is differentiable and D ln Df = D2f/Df is Lebesgue square-integrable.
These conditions ensure both that the function is strictly monotone increas-
ing (Df > 0) and that its first derivative is smooth and bounded almost
everywhere. The following theorem states that this class is identified with a
simple linear differential equation.

Theorem: Every function f of this class is representable as either

f = β1 + β2D
−1 exp[D−1w] (8)

or as a solution of the homogeneous linear differential equation

D2f = wDf (9)

where w is a Lebesgue square-integrable function and β1 and β2 are arbitrary
constants.
Proof: If f has the form (8), then D ln Df = w and therefore w ∈ L2 by
definition of the class; and it is also clear that it satisfies (9) for w = D ln Df .
On the other hand, if f has representation (9), then (8) is a solution, and
it is a standard result in the theory of linear differential equations that the
solution space is linear and of dimension 2, and hence every solution is also
of that form.

The coefficient function w = D ln Df = D2f/Df measures the relative
curvature of the monotone function in the sense that it assesses the size of
the curvature D2f relative to the slope Df . The special case of w = α
defines f(x) = β1 + β2 exp(αx), so that exponential functions have constant
relative curvature, and w = 0 defines a linear function. Thus, small or zero
values of w(x) correspond to locally linear functions, while very large values
correspond to regions of sharp curvature.

The representation (8) also has an interpretation that may occasionally
suggest a plausible model. By expanding Df(t) about a fixed value t0, one
obtains Df(t) ≈ Df(t0)[1 + w(t0)(t − t0)], so w(t) induces a local propor-
tional change in the velocity Df(t) by acting as a multiplier of t− t0. That
is, it defines a system in which velocity is constantly being updated by a
multiplicative transformation.

The class of functions (8) can be extended to orders of differentiability
j > 0 by replacing D−1w by D−(j−1)w. The operator M = D−1 exp may be

78

termed the monotonicity operator, and operates on a function so as to render
it monotone increasing and of one higher order of differentiability.

The Box-Cox transformation is not, strictly speaking, a member of this
class since it need not be differentiable or even defined at zero. On the other
hand, on the interval [ε,∞], ε > 0, the transform satisfies the differential
equation

D2f(x) =
1− λ

x
Df(x)

and is, therefore, representable in practical terms by this family.

6.3 Monotone Data Smoothing

This subsection considers the smoothing problem motivated by the model
yi = f(ti) + εi where the values εi are assumed i.i.d. with mean zero and
variance σ2, and the argument values are within the interval [0, T].

The fitting criterion considered here is

Fλ(y|w) = N−1
∑

i

[yi − β1 − β2m(ti)]
2 + λ

∫ T

0
w2(t) dt (10)

where
m(t) = (D−1 exp D−1w)(t). (11)

The first term is the least squares fitting criterion usual in spline smoothing,
except that the linear regression parameters β1 and β2 are essential because
m(0) = 0 and Dm(0) = 1. The first term in (10) could be generalized to
include variable weights for the observations, and other loss functions such
as negative log likelihood might be appropriate in certain applications, but
for simplicity the exposition is limited to this case.

The second penalty or regularization term has some of the characteristics
of the norm of the second derivative used in cubic spline smoothing, but the
role played by the denominator in w = D2f/Df is important since one wants
the regularization to also keep the fitted function away from the boundary
condition Df = 0. From (8) the limiting case λ →∞ is a straight line.

An estimate of σ2 is

σ̂2 = (N − 2)−1
∑

i

[yi − β1 − β2m(ti)]
2, (12)

79

which discounts N for the two regression parameters, but ignores the impact
of adapting w to the data.

The smoothing parameter may be chosen by cross-validation, that is, by
removing each observation yi in turn, minimizing (10) each time, and sum-
ming the squared differences between the value left out and the corresponding
value predicted by the model. However, this technique can often fail in the
sense that an infinitely large smoothing parameter is indicated, as will be
seen in the example in Section 3.3. Likewise, confidence bands for the esti-
mated function may be estimated by bootstrapping, using resampling of the
residuals from the estimated function. It should be noted that these do not
take into account the bias in the estimated monotone function.

6.3.1 Basis Function Expansions for w

The principal advantage brought by representation (8) is the transformation
of the estimation problem from one of finding the constrained function f
to one of computing the unconstrained function w. Because of this lack of
constraint, w may be defined as a linear combination of some set of basis
functions φk, k = 1, . . . , K, appropriate to the problem at hand. Let Φk =
D−1φk, and let φ and Φ be the vectors (φ1, . . . , φK)t and (Φ1, . . . , ΦK)t,
respectively, so that w(t) = ctφ(t) where c is the coefficient vector defining
the linear combination. Then the fitted function is of the form

ŷ(t) = β1 + β2m(t) = β1 + β2D
−1 exp[ctΦ(t)].

The criterion (10) must be minimized with respect to the coefficient vector
c and the regression coefficients β1 and β2.

Given the limited accuracy required of f in most statistical applications,
the values of D−1w using an arbitrary basis φ for w may be approximated by
the trapezoidal rule with a sufficiently fine equally-spaced mesh of arguments.
The author’s experience with this simple approach has been quite satisfac-
tory. The M-spline bases and their partial integrals, the I-spline bases, used
in Ramsay (1988) are especially convenient. However, if a piecewise constant
basis for w is used, f may be expressed analytically, and certain aspects of
the computations can be simplified.

The author’s experience has been satisfactory with the following iterated
two-stage minimization of (10). Beginning with an initial estimate c(0), which

may be a vector of zeros, estimate β
(0)
1 and β

(0)
2 by linear regression. Then,

80

on any iteration ν > 0 for which β
(ν−1)
j and c(ν−1) are estimates on the

previous iteration, first optimize with respect to c by the Gauss-Jordan or
scoring procedure for nonlinear least squares problems to obtain c(ν), and
then compute β

(ν)
j by linear regression. The Gauss-Jordan procedure requires

that the update vector
δ(ν) = c(ν) − c(ν−1)

be the solution of the linear equation

R(ν−1)δ(ν) = −s(ν−1)

where
R = N−1β2

1X
tX + λK ,

matrix X is N by K and has rows

x(ti) =
∂m(ti)

∂c
=

∫ ti

0
Φ(s) exp[ctΦ(s)] ds ,

symmetric matrix K of order K is

K =
∫ T

0
φ(s)φt(s) ds , (13)

vector s of length K has values

s = −N−1β1X
tr + λKc

and, finally, where r is the vector of length N containing the residuals ri =
yi − β1 − β2m̂(ti). The rate of convergence of these iterations is only linear,
but appears to be acceptably fast, and is usually obtained in about four to
five iterations.

6.3.2 Testing for Non-monotonicity

The differential operator (9) defining the monotone function f also suggests a
technique for assessing whether the data call for a nonmonotone fit. Heckman
and Ramsay (1997) describe an O(N) algorithm for fitting an L-spline h,
defined as the minimizer of

Fλ(y|L) = N−1
∑

i

[yi − h(ti)]
2 + γ

∫ T

0
(Lh)2(t) dt . (14)

81

Defining L = wD−D2 for a given fixed w implies that h defined by γ →∞
will be the monotone function f defined by w and the appropriate values
of β1 and β2. Finite values of γ, however, need not correspond to monotone
functions, and the limit γ → 0 yields, as usual, an interpolating function.
Thus, if the data indicate a finite value for γ corresponding to a nonmono-
tone function, one may reasonably question whether monotonicity was an
appropriate assumption. Bowman, Jones and Gijbels (1997) developed a
monotonicity test that is similar in spirit to this approach.

Heckman and Ramsay (1997) may be consulted for the details of imple-
menting this L-spline procedure. A module for Splus (Statistical Sciences,
1995) called L-spline is available in the Statlib library accessible by ftp at
stat.cmu.edu. This module requires two matrices as arguments. The first is
an N by 2 matrix U containing one’s in the first column, and the function
values m(ti) in the second. The second contains the diagonal and first four
off-diagonal bands in band-structured mode of the corresponding matrix of
reproducing kernel values K(ti, tj). These are defined for this problem as
follows. Let u(t) = (1, m(t))′, and v(t) = (−m(t)/Dm(t), 1/Dm(t))′. Then

K(s, t) = u′(s)[
∫ min(s,t)

0
v(z)v′(z) dz]u(t) .

The integral in this expression may be approximated by the trapezoidal rule
using a fine grid of values since there is no great need for high accuracy.

A further indicator may be constructed from the F-ratio, here used only
as a graphical device for displaying the credence of the monotone fit. Let
SSE∞ be the error sum of squares generated by the monotone fit, and let
SSEγ be that resulting from any specific value of γ. Let kγ be a measure of
equivalent degrees of freedom for the L-spline; this is commonly taken to be
the tr S where S is the corresponding linear smoothing matrix. Then the
ratio

F (γ) =
SSEγ − SSE∞

kγ − 2
/
SSEγ

kγ

(15)

should not differ greatly from unity if the L-spline fit defined by γ is not a
great improvement on that offered by the monotone fit.

6.3.3 The Growth Data

The growth data in Figure 13 were smoothed using a step-function expansion
of w defined by 41 equally-spaced breakpoints. This number was considered

82

to give enough resolution to allow the monotone function to track curve
characteristics lasting a week or so. Many applications will not require nearly
this number of break values.

The cross-validation criterion favored a value of λ far too small to give
a reasonable estimate of the standard error σ, and consequently the value
10−5.5 was chosen, giving σ̂ = 0.26cm, a value that is considered reasonable
for height measurements.

The confidence bands for the first derivative function displayed in Figure
?? were computed by resampling of the residuals 100 times, recomputing f
each time, and finally adding and subtracting at each argument two pointwise
standard deviations of the corresponding 100 bootstrapped curve values.

Applying the L-spline procedure for testing monotonicity to these data
yielded ∞ as the value of λ minimizing the generalized cross-validation crite-
rion, implying that the monotone fit in Figure 13 was optimal. Moreover, an
analysis of 100 sets of data produced by resampling of the residuals yielded
finite values of γ 39 times, and of these seven were nonmonotonic.

Figure 14 plots the standard error estimate and the F-ratio (15) for these
data over a range of values of γ. The standard error estimate in this case
discounts N by the approximate number of degrees of freedom computed by
the L-spline smoother, rather than by 2 as in (12). Values of log10 γ < 3
would give estimates of σ too small to be plausible. The corresponding
F-ratio values are not large enough to call into question the monotonicity
hypothesis.

7 Some Additional Notes on Curve Registra-

tion

7.1 Introduction

Techniques in functional data analysis (FDA) (Ramsay & Silverman 1997)
can be employed to study the variation in a sample of functions xi, i =
1, . . . , N , and their derivatives. In practice these functions are often a con-
sequence of a preliminary smoothing process applied to discrete data, and in
others the entire functions may be immediately available by on-line record-
ing techniques. In any case, we want to study variation both within and
between functions, and will be interested in functional analogs of descriptive

83

Figure 14: The left panel displays the standard error estimate σ̂ for a range
of smoothing parameter γ values. The F-ratio index (15) is shown in the
right panel.

84

statistics such as means, variances, and correlations, and also in functional
counterparts of multivariate methods such as regression, principal compo-
nents analysis and canonical correlation analysis. The functional context also
invites application of methods using derivative information, such as principal
differential analysis.

However, functional data tend to show two quite distinct kinds of vari-
ation, called here amplitude variation and phase variation. Figure 15 illus-
trates the fact that the compounding of these two types can frustrate even
the simplest analyses of replicated curves. Ten estimates of the accelera-
tion in height show individually the salient features of growth in children:
the large deceleration during infancy is followed by a rather complex but
small-sized acceleration phase during late childhood, and then the dramatic
acceleration-deceleration pulses of the pubertal growth spurt finally give way
to zero acceleration in adulthood. Note that the timing of these salient fea-
tures obviously varies from child to child. Ignoring this timing variation in
computing a cross-sectional mean function (the heavy dashed line in Figure
15) can result in a estimate of average acceleration that does not resemble
any of the observed curves: the mean curve has less variation during the pu-
berty than any single curve, and the duration of the mean pubertal growth
spurt is rather larger than for any individual curve.

Figure 16 displays a similar problem for mean temperature records of two
Canadian cities; the marine climate of St. John’s, Newfoundland, is associ-
ated with rather later seasons than is the continental climate of Edmonton,
Alberta. Before studying other ways in which the two curves differ, one needs
to consider how their seasons can be compared on the same time scale.

The upper left panel of Figure 17 presents a particularly common regis-
tration problem. In an experiment described in Ramsay, Wang and Flanagan
(1995), the force exerted by the thumb and forefinger was recorded during
twenty brief pinches applied to a force meter, with a background force of
about two Newtons applied before and after the pinch. The starting time for
each record was arbitrary, so that it was essential to find a common origin in
time in order to combine information across the records.

Figure 18 presents an even more complex problem. The solid curve dis-
plays the horizontal trace of the author printing “fda”, and this event took
2.49 seconds. The dashed line displays the cross-sectional mean of 20 repli-
cations, computed by first interpolating the raw data to a fixed number of
sampling points. The average and the standard deviations of the printing

85

Age

H
ei

gh
t A

cc
el

er
at

io
n

4 6 8 10 12 14 16 18

-6
-4

-2
0

2
4

Figure 15: Ten height acceleration curves (cm/year2) for boys estimated by
Ramsay, Bock and Gasser (1995). The heavy dashed line is the cross-sectional
mean, and illustrates the fact that averaging unregistered curves can result
in an average that does not resemble any sample curve. The heavy solid line
is the cross-sectional mean after registration of the curves.

86

Month

M
ea

n
T

em
pe

ra
tu

re
 (

de
g

C
)

0 5 10 15

-4
0

-3
0

-2
0

-1
0

0
10

20

•
•

•
• •

•
•

•

•
• •

•
•

•

•
• •

•

•

•

•
•

•
•

•

•
• • •

•

•

•

•
•

•
•

St. John’s
Edmonton

Figure 16: Mean temperature records for Edmonton, Alberta, and St. John’s,
Newfoundland. The seasons change later in St. John’s than they do in
Edmonton.

87

Unregistered

0.0 0.05 0.10 0.15
0

4

8

12

Peak Registered

0.0 0.05 0.10 0.15
0

4

8

12

Fully Registered

0.0 0.05 0.10 0.15
0

4

8

12

Warping Functions

0.0 0.15
0.0

0.15

Figure 17: The upper left panel contains 20 records of force (Newtons) ex-
erted by the thumb and forefinger with a maintained background force of 2
Newtons. The starting time (seconds) of each record is arbitrary. The upper
right panel contains these records with the times of maximum force (the ver-
tical dotted line) being aligned. The lower left panel shows the completely
registered force functions, and the lower right panel displays the time-warping
functions that register them.

88

metres

m
et

re
s

-0.05 0.0 0.05 0.10

-0
.0

5
0.

0
0.

05
0.

10

Figure 18: The solid line is a single replication of the author printing “fda”.
The dotted line is the mean across 20 replications, where the individual curves
vary in starting time and duration of printing.

times for these scripts were 2.35 and 0.145 seconds, respectively. Here both
the origin and the scale of time vary from replication to replication, a sit-
uation that holds in many applications. Moreover the functions observed,
consisting of the X-, Y- and Z-coordinates of pen position, are multivari-
ate. What meaning can we attach to the cross-sectional mean computed in
this manner? We see that the mean differs considerably in shape from this
replicate, and in fact, the mean curve calculated in this way is smaller than
almost all of the individual replicates. Should we convert these scripts to a
common time scale? Not if we want to retain the meaning of derivatives of
the coordinate functions, since changes in time scale imply changes in the
scale of derivatives as well.

These examples illustrate that the rigid metric of physical time may not be
directly relevant to the internal dynamics of many real-life systems. Rather,
there can be a sort of physiological or meteorological time scale that relates
nonlinearly to physical time and varies from case to case. Human growth
is, ignoring external factors, largely a consequence of a complex sequence of

89

hormonal events that do not happen at the same rate from child to child,
and also have a variable rate over the growth of a specific child. Weather
is driven by ocean currents, reflectance changes for land surfaces and other
factors that are timed differently for different spatial locations. And finally
muscle contractions do not build up and release at exactly the same rate
from one pinch to another.

Put more formally, the values xi(tj) of two or more functions may differ
because of two types of variation. The first is the more familiar amplitude
variation or vertical variation due to the fact that two functions x1 and x2

may simply differ at points of time at which they can be compared. But
they may also exhibit phase variation in the sense that x1 and x2 should
not be compared at a fixed time t, but at times t1 and t2 at which the
two processes are essentially in comparable states, so that the curves exhibit
comparable features at these times. For example, the intensity of the pubertal
growth spurts of two children should be compared at their respective ages of
peak velocity defined by D2x1(t1) = D2x2(t2) = 0, rather than at any fixed
age. Here we use the notation Dm to mean the process of taking the mth
derivative of a function, so that D2x(t) is the value of the second derivative or
acceleration at time t.. As another example we want to compare two scripts
at time points at which features such as the cusp in “d” in Figure 18 are
being created.

The problem of transforming the arguments of curves so as to align vari-
ous salient features has a very large literature in many different fields. The
problem is referred in this paper and by Silverman (1995) as curve regis-
tration, the engineering literature tends to the evocative term time warping
(Sakoe & Chiba, 1978; Wang & Gasser, 1998), and the process of registering
curves for purposes of computing average curves is called structural averaging
by Kneip and Gasser (1988, 1992). Registering outcomes over surfaces and
volumes is especially important in medical imaging (Bookstein, 1991).

7.2 Formulation of the Registration Problem

The curve registration problem can be expressed formally as follows. Let N
functions xi be defined on closed real intervals that can be taken without loss
of generality as [0, Ti]. These functions may be vector-valued, as would be
the case, for example, if they indicated positions in two- or three-dimensional
space, or simultaneous growth in several aspects of the skeleton. The upper

90

boundaries may either vary or may be fixed.
In practice the boundaries of the interval are often defined by marker

events such as birth and a fixed adult age for the growth data, or by arbitrary
values such as midnight on December 31 for the weather data. Or it may be
that the interval is simply large enough to include all of the curves of interest
plus some tail behavior of little concern. In the event that the functions
are periodic with known period, it will be assumed that each xi is extended
beyond [0, Ti] if there is a need to use information beyond the interval. Thus,
for periodic data we can also permit the study of the sampled functions over
the intervals [δ, Ti + δ] for any δ.

Let time interval [0, T0] be a standard interval. It may, for example, be the
average interval [0, T̄]. Let hi(t) be a transformation of time t for case i with
domain either [0, T0] for nonperiodic data, or [δ, T0+δ] for periodic data, as are
displayed in Figure 16. The fact that the timings of events remain the same
order regardless of the time scale implies that hi, the time warping function
should be strictly increasing, i.e., hi(t1) > hi(t2) for t1 > t2. This strictly
increasing condition ensures that the function hi is invertible, meaning that
we can always solve the equation y = h(t) for t given value y. We use the
notation h−1

i to denote the function such that h−1
i y = h−1

i [hi(t)] = t. Don’t
confuse this notation with the recprocal of h, a concept that we won’t need in
this paper. Invertibility of hi implies that for a specific event the time points
on two different time scales correspond to each other uniquely. In addition,
hi(t) must satisfy the boundary conditions hi(0) = 0 and hi(T0) = Ti. We
may, in addition, require that hi(t) be a smooth function of t in the sense of
being differentiable a certain number of times. This will be important, for
example, if we went to use the derivatives of registered functions.

Let x0(t) be a fixed function defined over [0, T0] that provides a sort of
template for the individual curves xi in the sense that after registration, the
features of xi will be aligned in some sense to those of x0. We can propose,
for example, the model

xi[hi(t)] = x0(t) + εi(t) or xi ◦ hi = x0 + εi , (16)

where ε is small relative to xi and roughly centered about 0. If, alternatively,
the template x0 may defined by discrete values xj0, j = 1, . . . , n, then our
model becomes

xi[hi(tj)] = xj0 + εij. (17)

91

Because we assume that ε is small relative to xi, this model postulates that
major differences in shape between target function x0 and specific function
xi are due only to phase variation.

A more complex model for inter-curve variation combining phase and
amplitude variation might be

xi[hi(t)] = Ai(t)x0(t) + εi(t) or xi ◦ hi = Aix0 + εi , (18)

where Ai(t) is an amplitude modulation function, probably constrained to
be positive. The discrete version of this is

xi[hi(tj)] = Ai(tj)xj0 + εij. (19)

Here, a practical solution to the registration problem will depend on Ai(t)
varying rather slowly relative to xi(t), as well as on the size variation in
residual function εi(t) being relatively small. One practical way of achieving
this is to register a derivative Dmxi rather than xi itself, since derivatives
tend to vary rather more rapidly than the functions themselves.

Suppose, now, that we have managed to identify these N warping func-
tions hi(t). We can then calculate the registered functions x∗i (t) as follows:

1. Compute values of the inverse function h−1
i (t) for a fine grid of values

of t. This is typically achieved to representing the relationship between
the values hi(t) put on the abscissa of a plot and t put on its ordinate
as a smooth function. Note that care must be taken to ensure that this
relation is strictly increasing.

2. Compute the values of xi(t) for the same fine grid of t-values.

3. Represent the relation between h−1
i (t) and xi(t) as a function using

the same techniques used to get the unregistered functions xi. These
new functions are the registered functions x∗i (t) in the sense that their
features will be aligned with those of the template x0(t), and therefore
will tend to occur at the same times across replications.

The registration task, then, is to estimate the time-warping functions hi

so that the de-warped components xi can be studied separately, along with
possible analyses of the functions hi as well.

92

7.3 Two Registration Techniques

In this subsection, we look closely at two methods for registering curves.
The first, marker registration, requires the identification of the location of
a number of visible features in each curve to be registered. Provided that
these features are unambiguously localizable, and the number of curves and
features is modest, the method is especially easy to use and easy to under-
stand.

The second method involves using the entire curve, rather than just the
location of certain features. Although more technical, the method is com-
pletely automatic, and especially handy when features are hard to pin down
in certain curves and/or a large number of curves has to be processed.

7.3.1 Marker or Landmark Registration

Marker registration is often used in engineering, biology, physiology and other
fields. It is the process of aligning curves by identifying the timing of salient
features in the curves. These features are often peaks or valleys, but can also
be the crossing by a curve of a threshold. The zero of acceleration during the
pubertal growth spurt and optimal temperature timings are examples. In
fact, if the derivative of a curve can be easily evaluated, both a peak and and
a valley can be located by finding the time at which the derivative crosses
zero.

More complex features are also possible, but what is essential in landmark
registration is that the `th feature among L for curve xi(t) be localizable at a
unique time value ti`. The timing of the corresponding feature in the template
function x0(t) is t0`. In this notation, we can designate the beginnings and
ends of curves as features with timings 0 and Ti, respectively, and indicate
the entire sequence of feature timings as ti`, ` = 0, . . . , L + 1, where L is the
number of features within the interior of the interval [0, Ti].

Registration of curve xi(t) is then a question of computing a strictly
monotone function hi(t), the warping function, such that

xi[h(ti`)] = x0(t0`), ` = 0, . . . , L + 1.

Using this strategy, curves are aligned by transforming time so that
marker events occur at the same values of the transformed times. Com-
parisons between marker timings can also be made by using corresponding
transformed times.

93

Normalized Time

Li
p

P
os

iti
on

 (
m

m
)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Figure 19: Twenty records of the position of the lower lip during the phrase
“bob”. The duration of the syllable has been normalized to the interval [0.1].
The vertical dotted lines indicate the average timings of the minimum and
the elbow.

Consider as an example the curves displayed in Figure 19. We see two
obvious landmarks in each curve: the minimum position and the elbow.
The average timings, t01 and t02, for these two features are 0.42 and 0.75,
respectively, and are indicated in the Figure as vertical dotted lines. But
for the first curve, the minimum occurs later at t11 = 0.48, and the elbow
at t12 = 0.82. This is plotted in Figure 20, where both the timings of the
two landmarks and a smooth curve h(t) passing through these points as
well as (0,0) and (1,1) is indicated. The curve is above the diagonal line,
indicating that timings of features for curve 1 are later than average. For
example, indicating the average curve by x0(t), we have, for the minimum,
x1(0.48) = x1(h(0.42) ≈ x0(0.42). This relation is only approximately true
because, while x1(0.48) and x0(0.42) are both minimum values, these values
need not be exactly equal.

Figure 21 displays the twenty curves registered so that the minima and
elbows all occur at the same times. In the S-PLUS and Matlab functions

94

Average Time

C
ur

ve
 1

 T
im

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

o

o

Figure 20: The open circles indicate the timings of the minima and the
elbows for the first lip curve in Figure 19 and average lip curve. The smooth
curve h(t) has been constructed to as to pass through these points as well as
points(0,0) and (1,1).

95

Normalized Time

Li
p

P
os

iti
on

 (
m

m
)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Figure 21: The twenty registered lip position curves. Landmark registration
was used to make the timings of the minima and elbows identical.

available by ftp from

ego.psych.mcgill.ca/pub/ramsay/FDAfuns

the function that implements landmark registration is landmarkreg.
Sakoe & Chiba (1978) estimated the values of h at marker timings by min-

imizing the sum of weighted distances of two speech patterns at the marker
timings and imposing monotonicity and continuity on h. They solved for the
discrete values of h by using a dynamic programming algorithm, and their
method is referred to as dynamic time warping, especially in the engineering
literature. Kneip and Gasser (1988, 1992) described marker registration in
detail from a statistical perspective.

However, marker or landmark registration can present some problems:
Marker events may be missing from certain curves, marker timing estimates
can often be difficult to obtain, and may be ambiguous. Moreover, construct-
ing automatic algorithms to identify landmarks may be a tricky exercise, and
users may prefer to identify landmarks by eye. In this case, landmark iden-
tification will be a time-consuming and tedious exercise that may not be

96

practical when large numbers of curves are to be registered. These issues are
discussed in the context human growth curves by Ramsay, Bock and Gasser
(1995).

7.3.2 Continuous Registration

We may also register two curves by optimizing some measure of similarity of
their shapes, and thus use the entire curves in the process. Put another way,
the timings of a fixed set of landmarks provide one way of describing how
similar the shapes of two curves are, but we can also choose measures which
use the whole curves.

Silverman (1995) optimized a global fitting criterion with respect to a
restricted parametric family of transformations of time shifts, and applied
this approach to estimating a shift in time for each of the temperature func-
tions in 35 Canadian weather stations. He also incorporated this shift into a
principal components analysis of the variation among curves, thus explicitly
partitioning variation into range and domain components. His measure of
shape similarity was the familiar least squares criterion, recast into functional
terms as follows:

F (hi) =
∫ Ti

0
{xi[hi(t)])− x0(t)}2 dt . (20)

This measure works well enough provided that the warping function hi is
severely restricted in its complexity. However, the measure can run into
trouble for more flexible warping functions when xi(t) and x0(t) have the
same shape but differ in amplitude. Ramsay and Li (1998) offer an example
in which it is shown that this criterion has a tendency to “pinch in” the sides
of the larger of the two curves in order to make it look more like the smaller.

Suppose that the values of x0(t) and xi(t) differ only by a scale factor,
so that x0(t) = Axi(t) for some positive constant A. This corresponds to
Ai(t) = A and εi(t) = 0 for all t in model (18. This means that the two
functions have essentially the same shape. In this case, if we plot the values
of one function against the other across for each value t in a fine grid, we will
see a straight line passing through the origin, but with slope either A or 1/A
depending on which curve we assign to which coordinate.

Suppose that we now consider curve values as a set of points to which we
might apply principal components analysis. If curve values are proportional,

97

oooooooo
o

o
o

o
o

o

o

o

o
o

o
o
o
ooooooo

oo
oo

oo
oo

ooo o o
o

o

o

o

o

o
o
ooo

Mean Lip Position (mm)

F
irs

t L
ip

 P
os

iti
on

 (
m

m
)

-0.5 0.0 0.5 1.0

-0
.5

0.
0

0.
5

1.
0

Figure 22: Circles indicate the values (x1(t), x̄(t)) for 51 equally spaced values
of t. Triangles indicate the corresponding points after registration.

then such an analysis would yield only one nonzero principal component.
That is, only one of the two eigenvalues of the matrix

[∫
x2

0(t) dt
∫

x0(t)xi(t) dt∫
x0(t)xi(t) dt

∫
x2

i (t) dt

]

is going to be nonzero. The integrals in this matrix expression are appropriate
if we have curve values for every value of time t, or if we have curve values for
a very fine mesh of values tj. Otherwise, we may prefer to replace integrals
by summations.

Consider, for example, the first lip position curve x1(t) and the average
lip position curve x0(t) = x̄(t). The 51 observed points are plotted as circles
in Figure 22. Because of the later timings of features for curve 1, the values
are not proportional, and exhibit a fair amount of what sometimes called
hysteresis. The ratio of the first eigenvalue to the second is about 62. But
if we do the same for the first registered curve, plotted as triangles in the
Figure, we now see much more collinearity, and the eigenvalue ratio is now
about 206.

98

This line of reasoning suggests that we might choose warping function
hi(t) to as to minimize the logarithm of the smallest eigenvalue of the cross-
product matrix

F (hi) = log µ2

[∫
x2

0(t) dt
∫

x0(t)xi[hi(t)] dt∫
x0(t)xi[hi(t)] dt

∫
x2

i [hi(t)] dt

]
(21)

In the event that functions are multivariate, such as is the case for the hand-
writing data, we shall form a composite criterion by adding this criterion
across functions.

Details on how we work with this continuous registraton criterion are de-
ferred to later, after we consider how to define a suitable family of warping
functions hi(t) in the next Section. However, we observe here that this crite-
rion tends to work even better if we replace the function values by their first
derivatives, or even a higher derivative if it can be estimated stably. This is
because derivatives tend to oscillate more rapidly than functions, and also
to vary about zero, so that the smallest eigenvalue measure is even more
sensitive to whether or not functions differ only by amplitude variation.

7.3.3 A Test of Continuous Registration

We can see how these two techniques work on an artificial example, using an
S-PLUS function registerfd that will be described in more detail below. Let
the target function be x(t) = sin(2πt), and let the function to be registered be

x(t) =
√

(2)[sin(2πt)+cos(2πt)]. These two functions have a phase difference

of 1/8, and x(t) has a maximum of 2 as compared to the maximum of x0(t)
of 1. Otherwise, the two functions have the same shape.

Here is the S-PLUS code to set up 101 discrete values of these two func-
tions for registration.

x <- seq(0,1.0,.01) y <- sqrt(2)*(sin(2*pi*x) + cos(2*pi*x)) y0 <-

sin(2*pi*x)

Now we convert these two sets of discrete values to functional data ob-
jects, using a Fourier basis with 101 basis functions.

basisfd <- create.fourier.basis(c(0,1),101) fd <- data2fd(y, x,

basisfd) fd0 <- data2fd(y0, x, basisfd)

99

Here is the code using S-PLUS function registerfd to set up the reg-
istration, and to set of the registered curve x∗(t) in functional data object
yregfd and the warping function h(t) in functional data object warpfd. No-
tice that we must tell the function that these are periodic data, and the
constant phase shift is saved as variable delta. Also, note that by default
registerfd uses the minimum eigenvalue criterion.

result <- registerfd(fd, fd0, periodic=T) yregfd <- result[[1]] warpfd

<- result[[2]] delta <- result[[4]]

The results are shown in the upper two panels of Figureregist, where we
see that the registered function is a lateral shift by 0.125 of the unregistered
function. In the upper right panel, we see as expected that h(t) ≈ t.

The problem with the least squares criterion (20) is vividly present in the
bottom two panels, resulting from running registerfd with the optional
argument crit=1. We see that this criterion s minimized in the presence of
considerable amplitude differences by pinching in the larger curve over am-
plitudes where both the smaller and larger curve have values. The resulting
warping function is far from diagonal, and even the lateral shift is poorly
estimated, with a value of 0.117.

7.4 Defining Smooth Warping Functions h

The warping functions h are required by most applications to be both mono-
tone and smooth. In the case of landmark registration, if there are several
landmarks, and if they are reasonably evenly distributed, the use of a stan-
dard smoothing method for the relationship between the timings ti` and t0`

may satisfy these requirements. For example, we may use a B-spline basis for
hi, or use a smoothing spline algorithm such as the smooth.Pspline function
provided with the FDA functions. These approaches, however, cannot assure
monotonicity, and may get us into trouble from time to time.

More generally, and within continuous smoothing algorithms such as that
used in the function registerfd, assurance that hi(t) is strictly increasing
must be build into the method. We use a method for constructing smooth
monotone functions that was developed and described in detail in Ramsay
(1998). Here is a brief outline of how these are defined.

Suppose that a function h has an integrable second derivative in addition
to being strictly increasing. Then every such function can be described by

100

Figure 23: regist
The upper two panels show results for an artificial registration problem using
the minimum eigenvalue criterion. The dotted curve in the upper right panel
is the curve to be registered to the curve indicated by the dashed line. The
solid line is the registered curve. The upper right panel contains the warping
function. The lower panels show the same results using the least squares
criterion.

101

the homogeneous linear differential equation

D2h = wDh (22)

because a strictly monotone function has a nonzero derivative, and hence
weight function w is simply D2h/Dh, or the relative curvature of h. This
equation, subject to the requirement that h(0) = 0 and h(T0) = Ti, has the
solution

h(t) = C1

∫ t

0
exp

∫ u

0
w(v) dv du . (23)

We get a bit fancy with notation, and also write h(t) as

h(t) = C1(D
−1 exp D−1w)(t) = C1(MD−1w)(t) .

Here the notation D−1 means computing the indefinite integral, and is natural
since D−1Dx = x. Function W (T) = D−1w(t) is often referred to as either
the antiderivative of w(t), or its primitive. The constant C1 is necessarily
Ti/[D

−1 exp D−1w(T0)].
The integration-rectification operator, M = D−1 exp, which in this case

maps the function D−1w into a twice-differentiable monotone function, may
be called the monotonization operator. When w is constant, h(t) = (C1/w) exp(wt),
so that an exponential function has constant relative curvature. A straight
line is implied by w = 0.

The relative curvature w can also be seen as the rate of the local percent-
age change in Dh. The Taylor expansion of Dh at t0 yields

Dh(t) ≈ Dh(t0)[1 + w(t0)(t− t0)].

Thus w(t0) is approximately the proportional change in Dh per unit time at
t = t0.

Just as using log or exp functions to eliminate the need of imposing
positivity in many situations, using this monotone family eliminates the need
of imposing monotonicity on the time transformation functions h by allowing
us to estimate the unconstrained function w.

7.5 Estimation of Warping Function hi

In this subsection we look at some further computational issues and details.
We can achieve some simplification of notation by dropping the subscript on
the function xi(t) to be registered as well as the warping function hi(t), and
by indicating the fixed target function x0(t) as y(t).

102

7.5.1 Roughness Penalties on w(t)

The S-PLUS and Matlab function registerfd offers a choice between the
two fitting criteria F (h) defined above. But in addition, the function permits
a penalty on the roughness of w(t), or, equivalently, on W (t) = D−1w(t). This
is achieved by minimizing

Fλ(h) = F (t) + λ
∫

[Dmw(t)]2 dt, (24)

For either criterion, if m = 0, larger values of smoothing parameter λ shrink
the relative curvature w = D2h/Dh to zero, and therefore shrink h(t) to t.
Moreover, since the relative curvature measure w is scale free, appropriate
values of λ tend not to vary much from one application to another. We find,
for example, that λ values of 10−4, 10−3, and 10−2 have worked well over a
range of applications.

Note, however, that if we need to estimate derivatives of h(t), it may be
better to work with higher values of m. This can happen, for example, if we
want to use derivatives of the registered functions with respect to t, in which
case the chain rule will imply that we take the corresponding derivatives of
h(t). Specifically, if the first derivative is needed, using m = 1 will effectively
penalize the total curvature this derivative, and thus keep it as smooth as
desired. In the limit λ →∞, this will ensure that w(t) is a constant.

In the analyses reported in this guide, the function w is represented by a
linear combination of B-spline bases

w(t) =
K∑

k=0

ckBk(t). (25)

The B-spline bases are of a specified order and defined by a breakpoint se-
quence ξl, l = 1, . . . , L. The definition (23) of h involves two partial integrals,
and although the use of quadrature schemes even as simple as the trapezoidal
rule is quite practical for computational purposes, it would be desirable in
many problems to have an explicit expression for h. Accordingly Ramsay and
Li (1998) used order 1 B-spline bases for w, since this permits the expression
of h in a closed form and leads to relatively fast computation. But function
registerfd allows for an arbitrary choice of basis in the expansion of w(t).

103

7.5.2 The Procrustes Fitting Criterion

The Procrustes fitting process, used in many multivariate data analysis prob-
lems, involves the alternation between using the data to define a target for
defining a particular transformation of each observation, and estimating the
transformations themselves. In the applications, the cross-sectional average
x̄(0)(t) of the unregistered curves is used as the initial target y for the es-

timation of each sample warping function h
(1)
i . If the curves have obvious

landmarks, they may also be aligned prior to computing x̄(0)(t).
Once these warping functions have been estimated, an updated cross-

sectional average

y(t) = x̄(1)(t) = N−1
∑

i

xi[h
(1)
i (t)]

can be computed and used as a target for computing revised warping func-
tions. Our experience indicates, however, that there is seldom any need for
this revision, since the change in the hi’s from the first to the second iteration
tends to be negligible.

104

References

Barlow, R., Bartholemew, D., Bremner, J., and Brunk, H. (1972) Statistical
Inference Under Order Restrictions. New York: Wiley.

Bartholomew, D. J. (1959) A test of homogeneity for ordered alternatives.
Biometrika, 46, 36-48.

Bloch, D. A. and Silverman, B W. (1997) Monotone discriminant functions
and their applications in rheumatology, Journal of the American Sta-
tistical Association, 92, 144-153.

Bookstein, F. L. (1991) Morphometric Tools for Landmark Data: Geometry
and Biology. Cambridge: Cambridge University Press.

Bowman, A. W., Jones, M. C. and Gijbels, I. (1997) Testing monotonicity
of regression, Journal of Computational and Graphical Statistics, to
appear.

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations, Journal
of the Royal Statistical Society, Series B, 26, 211-252.

Chambers, J. M. and Hastie, T. J. (1996) Statistical Models in S. New York:
Chapman and Hall.

Friedman, J. and Tibshirani, R. (1984) The monotone smoothing of scat-
terplots. Technometrics,, 26, 243-250.

Hanselman, D. and Littlefield, B. (2001) Mastering MATLAB 6: A Com-
prehensive Tutorial and Reference. Upper Saddle River: Prentice Hall.

Heckman, N. and Ramsay, J. O (1997) Penalized regression with model-
based penalties. University of British Columbia: unpublished manuscript.

Kelly, C. and Rice, J. R. (1990) Monotone smoothing with application to
dose response curves and the assessment of synergism. Biometrics, 46,
1071-1085.

Kneip, A. and Gasser, T. (1988) Convergence and consistency results for
self-modeling nonlinear regression. Annals of Statistics, 16, 82-112.

105

Kneip, A. and Gasser, T. (1992) Statistical tools to analyze data represent-
ing a sample of curves. Annals of Statistics, 20, 1266-1305.

Kruskal, J. B. (1965) Analysis of factorial experiments by estimating mono-
tone transformations of the data. Journal of the Royal Statistical So-
ciety, Series B, 27, 251-263.

Mammen, E. (1991) Estimating a smooth monotone regression function.
Annals of Statistics, 19,, 724-740.

Ramsay, J. O. (1988) Monotone regression splines in action (with discus-
sion). Statistical Science, 3, 425-461.

Ramsay, J. O. (1998) Estimating smooth monotone functions, Journal of
the Royal Statistical Society, Series B., 60, 365-375.

Ramsay, J. O., Bock, R. D. and Gasser, T. (1995) Comparison of height ac-
celeration curves in the Fels, Zurich, and Berkeley growth data. Annals
of Human Biology, 22, 413–426.

Ramsay, J. O. and Li, X. (1998) Curve registration. Journal of the Royal
Statistical Society, Series B, 60, 351-363.

Ramsay, J. O. and Silverman, B. W. (1997) Functional Data Analysis. New
York: Springer.

Ramsay, J. O. and Silverman, B. W. (2002) Applied Functional Data Anal-
ysis. New York: Springer.

Ramsay, J. O., Wang, X. and Flanagan, R. (1995) A functional data analysis
of the pinch force of human fingers. Applied Statistics, 44, 17–30.

Roche, A. (1992) Growth, Maturation and Body Composition: The Fels
Longitudinal Study 1929-1991. Cambridge: Cambridge Press.

Sakoe, H. and Chiba, S. (1978) Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE Transactions, ASSP-26, 1,
43-49.

106

Silverman, B. W. (1995) Incorporating parametric effects into functional
principal components analysis. Journal of the Royal Statistical Society,
Series B, 57, 673–689.

Statistical Sciences (1995) S-PLUS Guide to Statistical and Mathematical
Analysis, Version 3.3. Seattle: StatSci, a division of MathSoft, Inc.

Thalange, N. K. S., Foster, P. J., Gill, M. S., Price, D. A., and Clayton, P.
E. (1996) Model of normal prepubertal growth. Archives of Disease in
Childhood, 75, 1-5.

Wang, K. and Gasser, T. (1998) Alignment of curves by dynamic time
warping. Annals of Statistics, to appear.

Wright, I. and Wegman, E. (1980) Isotonic, convex, and related splines.
Annals of Statistics, 8, 1023-1035.

107

