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Overview

Overview

We want to fit data by a solution to a system of nonlinear
differential equations (DIFE’s).
We ignore DIFE’s so simple that they can be solved, such
as linear constant coefficient systems. These are already
well taken care of.
Our approach is a generalization of smoothing methods
combined with a computational approach involving a
modification of profiling.
We will show results for simulated data from two test-bed
problems.
Data from a chemical reactor producing nylon is analyzed
to estimate parameters defining equations for reaction
kinetics.
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Overview

What differential equations do

DIFE’s model change.
The link the behavior of one or more derivative to the
behavior of the process itself and, possibly,
to one or more exogenous inputs.
Perhaps the grande dame of such dynamic models is
F = Ma, connecting the rate of change of velocity a to
mass M and an exogenous force F .
Probably more people know about the closely related

E = mc2
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Some notation

The notation

Let x be a vector-valued function of length n varying over
time t , and that has first derivative values Dx(t).
Let u be a vector containing one or more forcing functions.
Let θ be a vector of parameters defining the DIFE.
A general formulation is Dx(t) = f(x, u, t |θ).
Systems involving higher order derivatives Dmx are
reducible to this form by defining new variables,

x1 = x, x2 = Dx1, . . . , xm−1 = Dm−1x.
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Current methods

Nonlinear least squares

The usual approach is called by textbooks the nonlinear
least squares or NLS method.
An initial value numerical method, such as Runge-Kutta, is
used to approximate the solution given

a trial set of parameter values
a trial set of initial conditions.

The fit value, usually SSE, is input into an optimization
algorithm to update parameter estimates and the initial
conditions.
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Current methods

NLS problems

NLS is computationally intensive since a numerical
approximation to a possibly complex system is required for
each update of parameters and initial conditions.
The size of the parameter set is increased by the set of
initial conditions needed to solve the system.
The inaccuracy of the numerical approximation is added to
noise in the data.
NLS only produces point estimates of parameters, and,
where interval estimation is needed, a great deal more
computation is required.
The fitting criterion can have a complex surface geometry,
including many local minima.
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Current methods

Other methods

Simulated annealing can be used if only a few parameters
are involved, but can be extremely slow.
Local linearization combined with methods for linear
systems such as the Kalman filter can be used if the
nonlinearity is mild.
Bayesian methods using MCMC are also possible, but
require repeated numerical solution and also add initial
values to the parameter set.
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The neural spike potential equations

The FitzHugh-Nagumo model

This simple two-component system is widely used to
model properties of actual neural networks.
They describe the reciprocal dependencies of the voltage
V across an axon membrane and a recovery variable R
reflecting outward currents, and
the impact of a time-varying external excitation E .
In the typical experiment only V will be measured, but we
will consider both to be available.
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The neural spike potential equations

The FitzHugh-Nagumo equations

Here is the system:

DV = c
(

V − V 3

3
+ R

)
+ E(t)

DR = −1
c

(V − a + bR)

V is voltage across axon membrane
R reflects outward currents
E reflects external excitation
The dynamics of the system are controlled by parameters
a, b and c.
The system would be linear except for the V 3 term.
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The neural spike potential equations

A FitzHugh-Nagumo solution
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The neural spike potential equations

What we see

The solution quickly reaches a steady state where it is
periodic with an asymmetric pattern.
The parameters control the amplitude and period of the
response.
The second order van der Pol equation is a closely related
system.
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The neural spike potential equations

The response surface can be complex

Differential equations be simple, and yet define extremely
complex behavior.
This is reflected in the response surface of these equations
as a functions of parameters a and b.
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The neural spike potential equations

A FitzHugh-Nagumo response surface
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tank reactor

The tank reactor model

A continuously stirred tank reactor CSTR consists of a tank
surrounded by cooling jacket and an impeller which stirs
the contents.
It is a basic piece of equipment for a chemical engineer.
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tank reactor

The tank reactor variables

A fluid is pumped into the tank containing a reagent with
concentration Cin at a flow rate Fin and temperature Tin.
Inside the tank a reaction takes place, producing a product
that leaves the tank with concentration Cout and
temperature Tout .
A coolant enters the cooling jacket with temperature Tcool
and flow rate Fcool .
Temperature Tout is can be cheaply measured with little
delay and considerable accuracy, but concentration Cout
requires time and money.
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tank reactor

The tank reactor equations

DCout = −βCC(Tout)Cout + FinCin

DTout = −βTT (Fcool , Fin)Tout + βTC(Tout)Cout

+FinTin + α(Fcool)Tcool .

The concentration equation is linear and forced by Cin.
The temperature equation is nonlinear because of the role
of Tout in coefficient βTC(Tout) multiplying Cout .
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tank reactor

The tank reactor coefficients

The dynamics of the system are controlled by these four
coefficient functions:

βCC(Tout , Fin) = κ exp[−104τ(1/Tout − 1/Tref )] + Fin

βTT (Fcool , Fin) = α(Fcool) + Fin

βTC(Tout) = 130βCC(Tout , Fin)

α(Fcool) = aF b+1
cool /(Fcool + aF b

cool/2),

These functions depend on two paired unknown
parameters:

κ and τ
a and b
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tank reactor

Tank reactor inputs

Each input in turn is stepped up, down and back to baseline.
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tank reactor

Tank reactor outputs

The experiment is run at two coolant temperatures: hot and
cool.
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tank reactor

What we see

When temperatures are moderate, the reactor responds
smoothly to changes in input.
But when temperatures are higher, sharp high frequency
oscillations emerge, and are particularly troublesome for a
change in coolant temperature.
Can we predict reactor response at high temperatures
from data collected and parameters estimated under the
safer cool regime?
Can we do this using only temperature measurements?
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An overview

For each variable xi in x, we define a basis function
expansion c′iφi , where ci and φi are a coefficient vector
and a vector of basis functions, respectively.
Over 400 basis functions per variable are used to capture
the sharp variation in outputs.
A data-fitting criterion F (y|x) is chosen that measures the
fidelity of x to the data in vector y, and also to the
differential equations.
The extent to which x is a solution of the differential
equation system is assessed by the use of additional
penalty terms, and
the relative balance between these two desiderata is
controlled by a set of smoothing parameters.
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Structural and nuisance parameters

There are two classes of parameters to estimate:
the parameters θ defining the equation, such as the four
reaction kinetics parameters in the CSTR equations
the coefficients ci defining each basis function expansion.

The equation parameters are structural in the sense of
being of primary interest.
The coefficients ci are nuisance parameters because they
are not of direct interest and
because their numbers are apt to vary with the length of
the observation interval, density of observation, and other
factors.
As a rule, the number of nuisance parameters can be
orders of magnitude larger than the number of equation
parameters, with a ratio of about 200 applying in the CSTR
problem.
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Eliminating nuisance parameters

Nuisance parameters are removed from the problem by
defining them as functions ci(θ) of the structural
parameters using a modified profiling procedure.
The fitting criterion is then optimized with respect to the
structural parameters θ alone.
An analytic expression for the gradient is developed using
the Implicit Function Theorem.
Compared to marginaling out the nuisance parameters
using MCMC, this process is

much faster,
much more stable, and
much easier to program.
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The data fitting criterion

SSE(c|y) =
n∑
i

wi‖yi − xi(ti)‖2.

Weights wi are defined to compensate for differences in scale
in the variables.
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Assessing fidelity to the equations

xi solves the corresponding differential equation if

Li(xi) = Dxi − fi(x, u, t |θ) = 0.

A measure of fidelity to the equation is

PENi(x) = wi

∫
[Li(xi)]

2dt .

These are combined into the composite penalty term

PEN(c|θ,λ) =
n∑
i

λiPENi(x)

PEN depends on θ through operator L.
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The inner optimization for estimating c(θ)

Each time θ is changed, we optimize

G(c|θ,λ) = SSE(c|y) + PEN(c|θ,λ)

This profiling process implicitly defines the estimating
function c(θ).

As λi →∞, variable xi is forced to satisfy the differential
equation more and more exactly.
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The outer optimization for estimating θ

We optimize
F (c(θ)|λ) = SSE(c(θ)|y)

No penalty term is needed here because c(θ) is already
been regularized in the inner optimization.
The iterations are greatly accelerated by computing the
gradient and Hessian using the Implicit Function Theorem.
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An overview of interval estimation

To a first order of approximation, we can approximate θ(y∗)
evaluated at an alternative observation y∗ by

θ(y∗)− θ(y) ≈ dθ

dy
(y∗ − y)

= [D2
θF (θ̂, ĉ|y)]−1D2

θ,yF (θ̂, ĉ|y)(y∗ − y).

The derivatives involved can also be computed using the
Implicit Function Theorem.
Sampling variance of θ is then obtained using the Delta
method.
An analogous procedure is used for the variance of c(θ).
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FitzHugh-Nagumo results

Results for the Fitzhugh-Nagumo equations

The solution to be estimated was determined by
{a, b, c} = {0.2, 0.2, 3} and initial values
{V (0), R(0)} = {−1, 1}.
The paths were measured at 0.05 time units on the interval
[0,20].
Noise was then added to these values with standard
deviation 0.5.
500 simulated samples were analyzed.
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FitzHugh-Nagumo results

Parameter estimate variation

Both bias and sampling variance decrease as λi →∞.
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FitzHugh-Nagumo results

Summary statistics for parameter estimates

a b c
True value 0.2000 0.2000 3.0000
Mean value 0.2005 0.1984 2.9949
Std. Dev. 0.0149 0.0643 0.0264
Est. Std. Dev. 0.0143 0.0684 0.0278
Bias 0.0005 -0.0016 -0.0051
Std. Err. 0.0007 0.0029 0.0012
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Tank reactor results

Simulations for the tank reactor equations

Parameters and initial values for paths were set to those
provided by a well known text on control engineering, T. E.
Marlin (2000) Process Control. New York: McGraw-Hill.
Parameter b is impossible to estimate because of its
correlation with a, and therefore was fixed 0.5.
1000 simulated samples were analyzed.
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Tank reactor results

A typical set of tank reactor data
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Tank reactor results

Path estimations, cool mode
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Tank reactor results

Path estimations, hot mode
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Tank reactor results

Path estimations, hot mode

Data for only temperature collected in the cool mode were used.
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Tank reactor results

Summary statistics for parameter estimates

κ τ a
True value 0.4610 0.8330 1.6780
Mean value 0.4610 0.8349 1.6745
Std. Dev. 0.0034 0.0057 0.0188
Est. Std. Dev. 0.0035 0.0056 0.0190
Bias 0.0000 0.0000 -0.0001
Std. Err. 0.0002 0.0004 0.0012
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The nylon experiment

Nylon and other polymers are created by a chemical
reaction in which molecules with two special types of
endings chain together to form long molecules.
The reaction requires water to form the molecules.
The long molecules can also be broken up, releasing
water.
Temperature and water are critical control variables.
There were five runs of the experiment at different
temperature settings.
These data were collected in the laboratory of Prof. K.
MacAuley of the Dept. of Chemical Engineering at Queen’s
University, Kingston, Canada.
The concentration measurements for variables A and C
cost about $30,000 to obtain.
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The variables in the nylon equations

A: molecules with an amine group end (measured)
C: molecules with a carboxyl group end (measured)
L: Nylon, a long chain of molecules (a polymer) (not
measured)
W: Water, indirectly adjusted in the experiment
The variables are related by the mass balance equation

A + C 
 L + W
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Nylon equations

DA = DC = −kp(T )
(

CA− LW
Ka(T )

)
DW = kp(T )

(
CA− LW

Ka(T )

)
− km

(
W −Weq

)
kp(T ) = kp0 exp

[
− E

R

( 1
T
− 1

T0

)]
Ka(T ) =

[1 + αWeq

γw/γw0

]
Ka0 exp

[
− 4H

R

( 1
T
− 1

T0

)]
variables and known constants are black
parameters to be estimated are in red
experimentally manipulated and measured constants and
variables are in blue
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Fits to the data
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Software

All the results were computed in Matlab.
Matlab functional data analysis software was also used.
These and a set of software routines that may be applied
to any differential equation is available from the URL:
http://www.functionaldata.org.
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