An Overview of the
Functional Linear
Model

We want to see where these lectures

on the functional linear model will go.




e Four functional linear models for the daily weather data.
e A functional ANOVA for precipitation.

e Predicting total annual precipitation from the tempera-
ture profile.

e Predicting today’s precipitation from today’s tempera-
ture.

e Predicting the entire year’s precipitation from the year’s
temperature profile.

e A short—term feed—forward model for precipitation.
e A more general perspective.

e Predicting precipitation dynamics: a differential equa-
tion

e The idea of a linear model reviewed.
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The average Canadian weather data

e 35 Canadian weather stations selected to cover the
country.

e Daily temperatures (0.1 degrees Celsius) and precipita-
tions (0.1 mm) averaged over the years 1960 to 1994.
(Feb 29th combined with Feb. 28th).

e Canada divided into Atlantic, Continental, Pacific and
Arctic weather zones.
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1. A functional analysis of variance

e Does the precipitation profile vary from one weather
zone to another?

e We have a number N, of weather stations in each cli-
mate zone g = 1,...,4, and

e the model for the mth temperature function in the gth
group, indicated by Prec ,,,, is
Prec ,uy(t) = p(t) + ay(t) + €mglt).
e 4(t) is the grand mean function, summarizing precipita-
tion for all of Canada.
e o, (?) is the functional effect of being in weather zone g
e In order to fix zone effects, we require that

> ay(t)=0forall g
g
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2. A scalar response and a functional

Independent variable

e The response is the log total annual precipitation
365
PrecTot ; = / Prec ,(t) dt
0

e The model is

365

log(PrecTot ;) = o+ / Temp(s)G(s)ds + €; .
0

e But here we have a real problem. How to avoid over-
fitting the 35 scalar observations?

e We'll use regularization or roughness penalties on the
estimated regression functions.
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3. A functional response and a func-
tional independent variable

This is a big topic, and breaks down into several useful spe-
cial versions.




3.1. The concurrent functional model

e We might only use the temperature at the same time
s = t because we imagine that precipitation now de-
pends only on the temperature now.

e Our model is
Prec ;(t) = a(t) + Temp(t)3(t) + €(t)

e \We might call this model concurrent or point-wise.

e Should we use regularization to force (3 to be smooth in
t?
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3.2. The annual or total model
e We may prefer to allow for temperature influence on
Prec () to extend over the whole year.

e The model expands to become

365

Prec ;(t) = a(t) +/ Temp(s)B(s,t) ds + €(t)

0

e The value (3(s, t) determines the impact of temperature
at time s on precipitation at time ¢.

e We need roughness penalties for variation in both s and
t
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3.3. The limited—term feed—forward model

e it may be that what counts is whether the temperature
has been falling rapidly up to time ¢. The model expands
to

t

Prec ;(t) = a(t) + /t_;remg(s)ﬁ(s, t)ds + €(t)

e Here ¢ is the time lag over which we use temperature
information.

e Now [ is only defined over the somewhat complicated
trapezoidal domain: ¢t € [0,365],t —d < s <.
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3.4. The local influence model

e Finally, we may open up the model to allow integration
over s within a t-dependent set ();.

e The model may therefore be

Prec ;(t) = a(t) + /TempL-(s)ﬁ(s, t)ds + €(t)

2
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4. Predicting derivatives

e When the response is a derivative, then there is the po-
tential for the function itself to be a useful covariate.

e The concurrent linear model
DPrec ,(t) = Prec ;(t)3(t) + €(t)

is @ homogeneous first order linear differential equation
in precipitation.

e If we also include an influence of temperature,
DPrec ;(t) = Prec ;(t)5o(t) + Temp,(t)51(t) + €(t),

the equation is said to be forced or nonhomogeneous.
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5. What exactly makes a model lin-
ear?

e \We see that the functional linear model has a lot more
variants than it’s poor multivariate cousin.

e We will need to look at a definition of a linear model that
encompasses these models and many others.
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